Current News

Voth group and collaborators find missing clue to how HIV hacks cells to propagate itself

Demonstrates the power of modern computing for simulating viruses

Computer modeling has helped a team of scientists, including several scholars from the the Voth group in the JFI, to decode previously unknown details about the process by which HIV forces cells to spread the virus to other cells. The findings, published Nov. 7 in Proceedings of the National Academy of Sciences, may offer a new avenue for drugs to combat the virus.

A key part of HIV’s success is a nasty little trick to propagate itself inside the body. Once HIV has infected a cell, it forces the cell to make a little capsule out of its own membrane, filled with the virus. The capsule pinches off—a process called “budding”—and floats away to infect more cells. Once inside another unsuspecting cell, the capsule coating falls apart, and the HIV RNA gets to work.

Scientists knew that budding involves an HIV protein complex called Gag protein, but the details of the molecular process were murky. “For a while now we have had an idea of what the final assembled structure looks like, but all the details in between remained largely unknown,” said Gregory Voth, the Haig P. Papazian Distinguished Service Professor of Chemistry and corresponding author on the paper.

Since it’s been difficult to get a good molecular-level snapshot of the protein complex with imaging techniques, Voth and his team built a computer model to simulate Gag in action. Simulations allowed them to tweak the model until they arrived at the most likely configurations for the molecular process, which was then validated by experiments in the laboratory of Jennifer Lippincott-Schwartz at the National Institutes of Health and the Howard Hughes Medical Institute Janelia Research Campus.

Published

November 8, 2017

More Information

News Release
Publication
Visit the Group

Chin group see fireworks from atoms at ultra-low temperatures

Reveals new form of spontaneous quantum scattering in a driven many-body system

“This is a very fundamental behavior that we have never seen before; it was a great surprise to us,” said study author Cheng Chin, Professor of Physics and in the JFI. Published Nov. 6 in Nature, the research details a curious phenomenon — seen in what was thought to be a well-understood system — that may someday be useful in quantum technology applications.

Chin’s lab studies what happens to particles called bosons in a special state called a Bose-Einstein condensate. When cooled down to temperatures near absolute zero, bosons will all condense into the same quantum state. Researchers applied a magnetic field, jostling the atoms, and they began to collide—sending some flying out of the condensate. But rather than a uniform field of random ejections, they saw bright jets of atoms shooting together from the rim of the disk, like miniature fireworks.

The tiny jets may show up in other systems, researchers said and understanding them may help shed light on the underlying physics of other quantum systems.

Published

November 7, 2017

More Information

News Release
Publication
Visit the Group

Bozhi Tian awarded inaugural ETH Materials Research Prize for Young Investigators

Recognized by ETH Zürich at Materials Day 2017 meeting

The ETH Materials Research Prize for Young Investigators recognizes outstanding contributions of young investigators that advance materials, from fundamental to applied research. These contributions could include, for example: the discovery of new classes of materials, the observation of novel phenomena leading to either fundamentally new applications and insights, and work that substantially impacts our understanding or applications of existing materials and phenomena.

Bozhi Tian, Assistant Professor at the University of Chicago, triumphed over stiff competition. Tian researches interactions between biological and electronic systems; for example, he examines how the behaviour of cells can be mimicked with semiconducting nanomaterials or how special nanomaterials can be used to measure the electrical conductivity of cells.

“Tian combines hard and soft materials in his research and connects the living with the lifeless,” explains Ralph Spolenak, Professor of Nanometallurgy and Head of the Department of Materials at ETH Zürich. “The bridge between these two poles is a major area in today’s materials science, one that is not only important for medicine, but also enables interesting applications in many other areas.”

Published

October 25, 2017

More Information

News Release
Visit the Group

Sibener group introduces novel method to separate isotopes

Utilizing gas-surface collisions on patterned silicon

In a paper published in Physical Review Letters, a team led by Prof. Steven J. Sibener describes a way to separate isotopes of neon using a beam of gas aimed at a precisely patterned silicon wafer, which reflects the different isotopes at slightly different angles. The method could one day be a less costly and more energy-efficient way to separate isotopes for medicine, electronics and other applications.

“One can think about it like separating the various colors of light into a rainbow using a prism,” said Sibener, the Carl William Eisendrath Distinguished Service Professor of Chemistry and the James Franck Institute. “This is a wonderful and very precise demonstration study, and we are very pleased with the results,” Sibener said. “It has been a delight to run down to the lab every day to see what’s happened. We’re very much looking forward to planning the next steps in this project to explore other atoms and molecules.”

Published

October 24, 2017

More Information

News Release
Viewpoint
Publication
Visit the Group

William Irvine elected 2017 APS Fellow and work featured on Physics Today cover

For experiments and theory on the topological aspects of fluid dynamics and mechanical metamaterials

William Irvine was recently elected a Fellow of the American Physical Society, nominated by the Topical Group on Soft Matter. The criterion for APS Fellow election is exceptional contributions to the physics enterprise; e.g., outstanding physics research, important applications of physics, leadership in or service to physics, or significant contributions to physics education. Fellowship is a distinct honor signifying recognition by one's professional peers.

Research for the Irvine group was recently featured on the cover of Physics Today. The Irvine Group at the University of Chicago has put a new twist on the smoke ring. Instead of blowing smoke into the air to create and visualize swirling flows known as vortex rings, they drove 3D-printed hydrofoils, lined with fluorescent dye, through water. Here, the wispy outer ring of white dye reveals a vortex ring; the orange and green trails are a tomographic reconstruction of the ring’s evolution over time. To learn how the group’s technique helped unveil hidden structure in fluid vortices, see the story.

Published

October 18, 2017

More Information

News Release
Publication
Visit the Group

Timothy Berkelbach named an AFOSR Young Investigator

Awarded for Study of Exciton Interactions in Semiconductor Nanostructures

The Young Investigator Program is open to scientists and engineers at research institutions across the United States who received Ph.D. or equivalent degrees in the last five years and who show exceptional ability and promise for conducting basic research. The objective of this program is to foster creative basic research in science and engineering, enhance early career development of outstanding young investigators, and increase opportunities for the young investigators to recognize the Air Force mission and the related challenges in science and engineering.

Published

October 11, 2017

More Information

News Release
Visit the Group

Park group makes atoms-thick Post-It notes for solar cells and circuits

Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures

In a study published Sept. 20 in Nature, UChicago and Cornell University researchers describe an innovative method to make stacks of semiconductors just a few atoms thick. The technique offers scientists and engineers a simple, cost-effective method to make thin, uniform layers of these materials, which could expand capabilities for devices from solar cells to cell phones.

“The scale of the problem we’re looking at is, imagine trying to lay down a flat sheet of plastic wrap the size of Chicago without getting any air bubbles in it,” said Jiwoong Park, a UChicago professor in the Department of Chemistry, the Institute for Molecular Engineering and the James Franck Institute, who led the study. “When the material itself is just atoms thick, every little stray atom is a problem. We expect this new method to accelerate the discovery of novel materials, as well as enabling large-scale manufacturing,” Park said.

Published

September 20, 2017

More Information

News Release
Publication
Visit the Group

Cheng Chin receives BEC 2017 Award

Recognized at biennial conference on Bose-Einstein Condensation

The 2017 Junior BEC Award is given to Cheng Chin for important contributions to the field of Bose-Einstein condensation, including the study of Feshbach resonances, scale invariance in 2D Bose gases, and universality near a quantum phase transition in 2D optical lattices.

Published

September 6, 2017

More Information

News Release
Visit the Group

Bozhi Tian named one of "Talented Twelve"

Chemical & Engineering News identifies young rising stars

Recognized as a "Bioelectronics Boss" who turns common reagents into unconventional materials, twists ordinary lab procedures into uncommon ones, and finds ways of using his creations in nontraditional applications.

“Bozhi is the real definition of an interdisciplinary scientist,” says fellow Chicago chemistry professor Andrei Tokmakoff. He adds that Tian is also fearless, thoughtful, and soft-spoken, which is unusual in the materials business, where there can be a lot of bluster.

Published

August 23, 2017

More Information

News Release
Visit the Group

Study examines feeding frenzy behavior in certain worms

Mathematical model helps explain animals’ decision-making process

The C. elegans roundworm sees by eating, sucking in big gulps of bacteria to learn about its surrounding environment. As researchers watched, they noticed an odd pattern marked by “bursts” of eating.

JFI researchers including the Dinner group develeoped a mathematical model to explain such eating bursts. The findings, published Aug. 10 in Proceedings of the National Academy of Sciences, help inform a broader understanding of animals’ feeding behavior and the science of decision-making.

“It’s an interesting model for understanding the processes that underlie how animals decide where and when to eat,” said lead author Monika Scholz, a Howard Hughes Medical Institute international student research fellow with UChicago’s Biophysical Sciences program and now at Princeton University. “For these worms, it’s all about the balance between speed and accuracy.”

Published

August 16, 2017

More Information

News Release
Publication
Visit the Group

Irvine group measures intertwining vortices in laboratory

Clever experiment documents multi-scale fluid dynamics

The new findings, published Aug. 3 in Science, are the first to show that helicity maintains a constant value during the flow of viscous fluids. Vortex dynamics have important applications in everyday life; meteorologists, for example, view helicity as a factor that contributes to the formation of supercell tornadoes.

“The fact that we have some measurements for the first time that show helicity can be preserved, especially in the presence of stretching, can translate directly to those efforts,” said William Irvine, an Associate Professor of Physics in the James Franck Institute, who published the findings along with four co-authors.

Simulating helicity in those flows has been difficult because of the widely separated yet interconnecting scales in which they operate. Previous work had been largely theoretical and involved hypothetical, simpler fluids totally lacking in viscosity. Calculations showed that helicity was conserved in these hypothetical fluids, but viscosity emerged as a significant factor in the flow of actual fluids.

“One of the core problems is that you need to sample or measure features of the flow that exist on very different length scales,” said Martin Scheeler, the study’s lead author, who recently completed his Doctorate in Physics in the JFI. The scales range from the diameter of a vortex (approximately 30 centimeters or one foot) to the diameter of its thin core (approximately one milllimeter or three hundredths of an inch).

“You need to measure the flow inside the core as well as the overall shape evolution of that vortex,” Irvine said. “That’s quite a separation.” Irvine characterized Scheeler’s work in overcoming the experimental challenges— simultaneously tracking the fine details of the flow while still measuring the critical larger-scale dynamics—as “a tour de force.”

Published

August 3, 2017

More Information

News Release
Publication
Visit the Group

Arvind Murugan receives 2017 Simons Investigator award

For research in Mathematical Modeling of Living Systems

Arvind Murugan works on how organisms enhance information uptake from the environment by using inference from past experience and has applied such ideas to self-assembly dynamics, olfaction, circadian clocks and stress-response pathways. The Simons Investigators program provides a stable base of support for outstanding scientists, enabling them to undertake long-term study of fundamental questions.

Published

August 1, 2017

More Information

Press Release
Visit the Group

Talapin group develops DOLFIN approach to build nanomaterials into electronic devices

New method promises easier nanoscale manufacturing

The new research, published in Science, is expected to make such materials easily available for eventual use in everything from LED displays to cellular phones to photodetectors and solar cells. Though nanomaterials are promising for future devices, ways to build them into complex structures have been limited and small-scale.

“This is a step needed to move quantum dots and many other nanomaterials from proof-of-concept experiments to real technology we can use,” said co-author Dmitri Talapin, Professor of Chemistry in the James Franck Institute and Scientist with the Center for Nanoscale Materials at Argonne. “It really expands our horizons.”

The new technique, called DOLFIN, makes different nanomaterials directly into “ink” in a process that bypasses the need to lay down a polymer stencil. Talapin and his team carefully designed chemical coatings for individual particles. These coatings react with light, so if you shine light through a patterned mask, the light will transfer the pattern directly into the layer of nanoparticles below—wiring them into useful devices.

“We found the quality of the patterns was comparable to those made with state-of-the-art techniques,” said lead author Yuanyuan Wang, postdoctoral researcher in the Talapin group. “It can be used with a wide range of materials, including semiconductors, metals, oxides or magnetic materials—all commonly used in electronics manufacturing.”

The team is working toward commercializing the DOLFIN technology in partnership with UChicago’s Polsky Center for Entrepreneurship and Innovation.

Published

July 27, 2017

More Information

News Release
Publication
Visit the Group

Vincenzo Vitelli to join Faculty

Arriving in Autumn 2017

The JFI is pleased to welcome the Vitelli group to campus in Autumn 2017.

Published

June 27, 2017

More Information

Visit the Group




Chin group settle debate over how exotic quantum particles form

Implications for universality

New research by physicists at the University of Chicago settles a longstanding disagreement over the formation of exotic quantum particles known as Efimov molecules. The findings, published last month in Nature Physics, address differences between how theorists say Efimov molecules should form and the way researchers say they did form in experiments. The study found that the simple picture scientists formulated based on almost 10 years of experimentation had it wrong—a result that has implications for understanding how the first complex molecules formed in the early universe and how complex materials came into being.

“I have to say that I am surprised,” Chin said. “This was an experiment where I did not anticipate the result before we got the data.”

The data came from extremely sensitive experiments done with cesium and lithium atoms using techniques devised by Jacob Johansen, previously a graduate student in Chin’s lab who is now a postdoctoral fellow at Northwestern University. Krutik Patel, a graduate student at UChicago, and Brian DeSalvo, a postdoctoral researcher at UChicago, also contributed to the work.

Published

Jun 22, 2017

More Information

News Release
Publication
Visit the Group

JaegerFest: In Honor of Heinrich Jaeger's 60th Birthday

The World in a Grain of Sand: A Symposium on the Collective Behavior of Particles

In honor of Heinrich Jaeger’s 60th birthday and to celebrate his highly productive and inspiring scientific career, the MRSEC, JFI, and Physics Department hosted a special Symposium on June 2-3. JaegerFest welcomed to campus more than 100 friends, colleagues, staff and administrators both current and retired, as well as many generations of current and former graduate students. Participants enjoyed a full day of talks related to granular physics, and dinner at the local Experimental Station that included a "roast" where everyone could only think of nice things to say.

Published

June 5, 2017

More Information

Event Link
Visit the Group

Suri Vaikuntanathan awarded Sloan Research Fellowship

Prestigious early-career recognition

The Sloan Research Fellows are the rising stars of the academic community,” says Paul L. Joskow, President of the Alfred P. Sloan Foundation. “Through their achievements and ambition, these young scholars are transforming their fields and opening up entirely new research horizons. We are proud to support them at this crucial stage of their careers.”

Published

February 21, 2017

More Information

News Release
Press Release
Visit the Group

New method uses heat flow to levitate variety of objects

Undergraduates in Chin group lead breakthrough work

Third-year Frankie Fung and fourth-year Mykhaylo Usatyuk led a team of UChicago researchers who demonstrated how to levitate a variety of objects—ceramic and polyethylene spheres, glass bubbles, ice particles, lint strands and thistle seeds—between a warm plate and a cold plate in a vacuum chamber.

“They made lots of intriguing observations that blew my mind,” said Cheng Chin, professor of physics, whose ultracold lab in the Gordon Center for Integrative Science was home to the experiments.

Published

February 15, 2017

More Information

News Release
Publication
Visit the Group

New SPIFF method improves accuracy of imaging systems

Collaborative work by the Dinner, Rice, and Scherer groups

The newly developed SPIFF (single-pixel interior filling function) method provides a way to detect and correct systematic errors in data and image analysis used in many areas of science and engineering.

“Anyone working with imaging data on tiny objects — or objects that appear tiny — who wants to determine and track their positions in time and space will benefit from the single-pixel interior filling function method,” said co-principal investigator Norbert Scherer.

Myford Super 7 lathe dedication

New tool for the JFI Student Machine Shop

Stuart Rice generously donated a Myford Super 7 Lathe to the JFI Student Machine Shop, and we had a dedication ceremony on January 10, 2017. The lathe is already being put to good use.



Published

January 30, 2017

More Information

Prof. Robert Gomer, 1924-2016

Former JFI Director and pioneering chemist passes away at the age of 92.

Prof. Emeritus Robert Gomer, a chemical physicist who pioneered techniques for studying molecules and taught at the University of Chicago for nearly a half-century, died Dec. 12 of complications related to Parkinson’s disease. He was 92.



Published

January 12, 2017

More Information

News Release

Chin group confirms theory describing principles of phase transitions

Ultracold atoms unveil a universal symmetry of systems crossing continuous phase transitions

For systems near continuous phase transitions, the details don’t matter. In principle, a universal theory can be applied to understand continuous phase transitions whether they occur in biological cell membranes, magnets, liquid crystals, or even in the entire early universe! But while the universal theory of static systems near continuous phase transitions has been generally successful, the degree to which the dynamics of crossing such transitions can be universally explained presents an exciting new frontier.

Recent work by the Chin group uncovers these universal features in the dynamics of ultracold atoms in a shaking optical lattice. When the researchers shake the lattice they find that atoms undergo a continuous, quantum phase transition, after which they must choose between two new ground states with either leftward or rightward momentum. This causes the gas to split into domains with atoms in one momentum state or the other, which can then be observed using a microscope. The researchers found that the details are indeed irrelevant: the growth of domains over time and their pattern across space are independent of the rate at which the transition is crossed, once they account for a simple power-law scaling of space and time. These findings support the universal scaling symmetry of phase transition dynamics, which provides a simple, powerful prediction for the behavior of a huge variety of systems when they cross continuous phase transitions.

Published

November 3, 2016

More Information

News Release
Publication
Visit the Group

Heinrich Jaeger receives 2016 Faculty Award for Excellence in Graduate Teaching and Mentoring

When it comes to graduate education, it’s the questions that concern Heinrich Jaeger, not the answers.

“Many students might think that we would be very much laboring to find answers to big questions, and that is certainly true,” says Jaeger. “But the important aspect of mentoring is to find questions. How do you bring students to the point that they will ask research questions that are interesting and important?”

Published

June 2, 2016

More Information

News Release
Visit the Group

New Device Steps Toward Isolating Single Electrons for Quantum Computing

The Schuster Group has integrated trapped electrons with superconducting quantum circuits

“A key aspect of this experiment is that we have integrated trapped electrons with more well-developed superconducting quantum circuits,” said graduate student Ge Yang, lead author of the Physical Review X paper that reported the group’s findings. The team captured the electrons by coaxing them to float above the surface of liquid helium at extremely low temperatures.

Published

May 19, 2016

More Information

News Release
Publication
Visit the Group

Top