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Abstract. The creation of new materials “by design” is a process that starts from
desired materials properties and proceeds to identify requirements for the
constituent components. Such process is challenging because it inverts the typical
modeling approach used in physics and materials science, which starts from given
micro-level components in order to predict macro-level properties. We describe
how to tackle this inverse problem using concepts from evolutionary computation
that make it possible to find with high efficiency component-scale parameters best
adapted to given target properties. These methods have widespread applicability
and open up new opportunities for design as well as discovery. In the interest of
generality, we discuss examples from two, very different classes of soft materials.
First we consider granular materials, which are inherently disordered and far from
equilibrium, and where an important problem is to identify particle shapes that are
optimized for design targets such as low aggregate porosity or high stiffness under
compression. Second, we discuss thin films of block-copolymers, which have gained
increasing relevance for applications in commercial nanodevice fabrication, and
where a crucial engineering problem is to develop processes that coerce these
materials to self-assemble into ideal, defect-free circuit-like features.



Introduction. Whether we design an object in our minds, on a piece of paper, or on
the computer, we always start with an idea about the desired overall properties and
then proceed to identify the necessary components, their configuration, and any
associated fabrication steps required to achieve the targeted outcome. As such, the
process of design maps macro-level targets onto micro-level requirements and
develops strategies that implement such mapping. The same holds for the design of
materials.

While this sounds conceptually simple, there are at least four reasons why it can
rapidly become difficult. The first is that, as the number of constituent ingredients
increases, the set of possible combinations to consider grows exponentially. More
ingredients open up more choices, but properly tuning the many micro-level
parameters to generate the targeted outcome becomes a major challenge [1].
Second, the mapping from the space of desired macro-level behaviors to the space of
particle-level parameters does not have to be unique. In other words, there can be a
multitude of valid design solutions to a given design problem. Third, a critical
additional aspect of design may be identifying not only the ingredients, but also the
most appropriate boundary conditions and the processing path, including the best
initial conditions. This is important especially in situations where the design target
is a material in a non-equilibrium configuration, such as a glass. Finally, to make a
design-based solution valuable it should do more than represent a single answer to
single task. What we are looking for in a useful design is that it provides a path
toward solving similar problems without having to go through the full process.
Ultimately we would like to obtain more generally applicable prescriptions, or rules,
that apply to whole classes of related design problems.

For creating materials with novel
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computational means.

One way to think about the approach toward a desired design outcome is to
delineate the iterative process that accompanies it into two closely coupled parts
that we here call the forward and the inverse component (Fig. 1). The forward
component describes the part of the process where a particular idea or
implementation is tried out, i.e., where a given set of micro-scale variables is used to
create a particular macro-level outcome. We label this a “forward” process, because
it is the typical approach taken in materials science, physics, and chemistry (called
the “direct approach” in Ref. [2]). This forward component could be an actual
laboratory experiment or a virtual experiment performed via computer simulation.
As long as the forward simulation engine used produces physically accurate output,



virtual experiments have the advantage that a large portion of parameter space can
be explored quickly. The inverse component then compares this macro-level
outcome with the targeted design goal and, assessing the difference, generates a set
of new micro-level parameters to be tried out by the forward component in a
subsequent iteration step.

In this way, the design process can be viewed as a search and optimization problem:
the sought after micro-level parameters are those that minimize the difference
between the output of the forward process and the given design target.

When we design in our mind, we perform this iterative optimization automatically
and are able to close the distance to the design goal more or less effectively
depending on prior experience. Yet the same process also has merits when there is
little or no prior experience, except that empirical trial and error clearly is not the
best design strategy and some knowledge has to be built up first about how the
macro-level outcome reacts to micro-level parameter changes. When designing with
the help of a computational approach this “learning” needs to be achieved by the
algorithm that performs the optimization.

Since several of the above issues apply very generally to the design of any complex
system or material, there has been considerable interest in developing automated,
computer-based approaches to solving inverse problems of this type. Recent
reviews of inverse methods for materials design, such as those by Rondinelli,
Poeppelmeier and Zunger [2] or Jain, Bollinger and Truskett [3], show how
computer algorithms that can guide the design of materials with targeted properties
have opened up new directions for materials science.

In practice, there are numerous optimizers to choose from and generally the choice
of both the optimizer and the forward simulation engine will depend on the type of
problem at hand. Computer-aided design approaches have been used to predict
crystal and protein structures, including super-hard materials and novel protein
configurations [4-7]. Applied to polymers, such methods have paved the way
towards optimizing directed self-assembly [8-11]. Similar methods have been
employed to identify the crystal structures of patchy, colloidal particles [12]. For far-
from-equilibrium systems like jammed, metastable aggregates of particles [13],
simulation-based optimization has been used to design bulk properties such as
stiffness or packing density by tuning complicated micro-scale features like particle
shape [14-16].

In the following we consider one particular class of optimization algorithms, namely
those based on evolutionary computation. We discuss examples from two very
different classes of soft materials to demonstrate the wide range of applicability:
macroscopic granular materials and nano-structured block-copolymers. Given the
rather different physics and design tasks for each of these materials, the forward
calculation engines are completely different, involving DEM simulations in one case,
and particle-based simulations of field theory solvers [69-70] in the other, but the
algorithms for the inverse process are closely related. Details can be found in Refs.
[10, 11, 13-18]. In the following we provide an overview of this prior work by our



research groups.

The basic idea is to treat a materials design problem in a way that is, at least
superficially, similar to biological evolution: a whole family of different trial
solutions is implemented, the performance of every member of this family is
evaluated in a forward simulation of the resulting macro-level material properties,
and the fittest performers (in the sense of coming closest to the design target) are
kept. From these, a new family of “offspring” is then constructed via suitable
mutations in the space of micro-level parameters, and these offspring then compete
against each other in successive generations of selection and mutation. The process
is terminated once the output approximates the design goal sufficiently well.

To apply this technique, only two components are essential. The first is a genome,
or means of encoding trial solutions, so that mutations can be applied freely. The
second is a fitness metric, i.e., a means of determining which potential solutions are
better than others. Once these two components have been established, an
optimization algorithm can be constructed to search the solutions space. Much
improved over older methods like genetic algorithms, the current front runners are
called evolutionary strategies. Specifically, we focus here on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), originally developed by Hansen et al.[19].
Like most evolution strategies, this algorithm attempts to improve the quality of
solutions by examining perturbations around a given mean solution. In an ordinary
random search, a new population is obtained by perturbing the old population using
Gaussian noise. In contrast, CMA-ES uses the covariance matrix to perturb the
system along specific search directions. The key feature of this algorithm is that it
uses information from prior iterations of the search to deterministically update the
mean and covariance matrix. In particular, the mean of the distribution is updated
so that the likelihood of drawing a previously found good candidate is maximized,
whereas the covariance matrix is updated so as to increase the probability of a
successful next step.

There are several important features of this approach worth noting. Unlike
gradient-based techniques, this type of optimizer can cope easily with very rough or
very flat “search-scapes”. Further, the forward simulations in each generation can all
be carried out in parallel, which means that large numbers of trial solutions can be
tested simultaneously, speeding up convergence when searching in high-
dimensional parameter spaces. Since the optimizer only operates on the space of
input variables for the forward process it can be completely agnostic about the
actual physics of the problem. Thus, the optimizer can operate in “black box” fashion
and potentially be effective across a larger class of problems than a highly tailored
optimizer. One additional point of note is that this approach allows us to go beyond
incrementally improving a material’s properties: we can set a design target far
outside any previously established performance envelope, for example asking for
qualitatively new behavior. As long as the method can identify the micro-level
parameters required to achieve such target it will thus function as a powerful tool
not only for optimization but also for discovery.



Granular Materials by Design

Granular materials are random aggregates of a large number of macroscopic,
individually solid particles that interact primarily via dissipative contacts among
neighboring grains [20, 21]. They come in all sizes and encompass particulate media
from sand, gravel, or soil to agricultural products like grain or fertilizer, to
pharmaceutical powders to pigments. Most often a bulk commodity comprised of
seemingly simple ingredients, granular material can nevertheless exhibit complex
behavior during storage, handling and processing, which necessitates careful choice
of the constituent particles. In fact, compared to ordinary elastic solids, many of the
properties of granular matter are sufficiently special that it makes sense to consider
optimizing them. For example, granular materials can reversibly transform between
flowing and rigid states via a jamming transition [22] and offer distinct advantages
over ordinary solids in terms of their ability to withstand plastic deformation and
dissipate energy without cracking, or to self-heal after impact and recover load
bearing strength if suitably confined. If picked correctly, granular materials can
simply be poured or dumped into place, yet the resulting, amorphous particle
aggregate is solid-like rigid, can support load and withstand shear. At the same time,
a granular aggregate remains highly porous: the densest possible random packing
for equal spheres is only ~64% by volume; rods and odd-shaped particles pack even
less dense [21, 23, 24]. On large scales, these features are important, for example,
for the construction and functioning of breakwaters, railroad beds, or foundations.
On smaller scales, they enable a range of unique applications for energy dissipation
and vibration isolation, for additive manufacturing via laser sintering of metal
powder [25-27], or as shape-adaptive, variable-compliance material for soft
robotics [28-33]. In addition, the high surface area to volume ratio of granular
aggregates offers advantages for applications in catalysis or as advanced battery
electrodes.

For applications where either the performance of the granular material components
is critical or the fabrication cost is substantial, it therefore makes sense to envision
customized particle types and ask: What kind of particle should be picked in order
to optimize a particular property of the aggregate? Furthermore, if there were a
method for rational design of granular materials, could suitably optimized particles
lead to novel aggregate properties beyond those currently known?

The availability of optimized particles would make it possible to overcome a number
of bottlenecks currently limiting the use of granular materials and open up a wide
range of new uses. This might include light-weight particulate materials with
jamming/unjamming behavior designed to optimize soft robotics applications; high-
porosity high-toughness materials for medical implants that can be poured into
place during minimal incision surgery; shock absorbing materials that have
designed stress-strain characteristics to protect sensitive equipment; head-
conforming helmet interiors for better blast protection; or particles designed for
specific settling characteristics to minimize, or tune, compaction.



With granular materials a key difficulty in achieving this is that the aggregate
behavior depends not only on specific material properties of the individual particles,
but critically also on their shape and their surface properties, since these control the
packing arrangement among contacting neighbors. Thus, to a large extent it is the
local connectivity and the “architecture” of the contact network that determine the
overall response to applied stresses. In granular media, this architecture is based on
particle configurations that are random. Together with the wide range of possible
particle shapes this allows for tremendous structural diversity and a very rich set of
dynamic responses. Compared to regular lattice structures this also makes it
significantly more challenging to predict how the overall, aggregate behavior is
affected by the local, particle-level properties and packing arrangements.

Prior work on granular materials has therefore mainly focused on finding and
rationalizing the aggregate properties for a given particle type. Going beyond
spherical particles, there has been much progress concerning the maximum
achievable packing densities, together with local particle configurations and
correlations among neighboring particles. This includes particle shapes such as
Archimedean and Platonic solids [34-39], ellipsoids, cuboids, or ‘superballs’ [24, 40-
45], cylinders, cones, and frustums of different aspect ratios [46-48], as well as
various types of particles constructed from overlapping disks or spheres [42, 49-
56]. In general, much less is known about the mechanical response of such packings
and, with few exceptions, the focus has traditionally been on particles with an
overall convex shape. More recently, however, increasing attention has been paid to
particles that are highly non-convex (or are sufficiently flexible so they can assume
concave shape during the packing process) [24, 57-66]. Significant concavity allows
for interlocking or entanglement, which directly affects the mechanical response.
Meanwhile, non-convex particles with sharp bends or large protrusions tend to pack
less densely than convex shapes. Together, this suggests that shapes could be found
that optimize trade-offs between several desirable attributes, e.g., maximize
porosity together with strength, or maximize jammed rigidity together with
malleability when unjammed.

The challenge in expressing the role of particle geometry in driving certain
behaviors of granular material lies in the combination of two aspects: shape not only
is an effectively inexhaustible parameter, but the macro-scale aggregate behavior
can sensitively and non-monotonically depend on small changes in particle shape
[14]. However, we found that optimizers based on evolutionary strategies vastly
outperform standard search methods (such as simulated annealing) and make it
possible to find optimal or at least near-optimal
particle shapes for a given design task.

For simplicity, we represent particles as granular
molecules, i.e., sets of equal-sized spheres that overlap
a fixed distance. The main reason is that this limits the
type of particle-particle interactions to sphere-sphere
contacts that can be handled straightforwardly in

Fig. 2. ‘Granular Molecules’,
each 3d-printed as one piece

from hard plastic. Each sphere
standard DEM simulations, as shown previously in  is~3mm in diameter.



work using such bonded-sphere compound particles as a means to explore non-
sphericity and aspects of (geometric) friction [42, 49, 50, 52, 55, 67, 68]. Different
particle shapes are represented by N spheres placed in configurations specified by a
construction protocol we call a blueprint [14]. The blueprint expresses the genotype
of each particle shape (Fig. 2). These configurations do not have to be planar, and
for N >3 can extend in all three dimensions. The optimizer then creates and evolves
a whole family of shapes by mutating the sphere configurations.

As we mentioned earlier, this approach makes it possible not only to quantitatively
optimize known properties of a granular material, but also to search for particle-
level attributes, here shape, that result in qualitatively new properties. An example
has been the discovery of a particle shape that leads to strain stiffening material, i.e.,
a stress-strain curve that exhibits a positive second derivative, under constant
pressure boundary conditions (Fig. 2, on the right) [14]. This qualitatively differs
from typical jammed material, which exhibits strain weakening under similar
conditions. With N =5 this particle is just large enough to assume a 3-armed shape
that combines strong non-convexity with non-planarity.

With compound particles composed of same-size spheres as in Fig. 2 the range of
addressable design tasks is limited to behavior that can be produced by highly
corrugated shapes. One extension is to allow for variable radius of each sphere [15].
A further extension is letting neighboring spheres overlap. For large N this makes it
possible to approximate both smooth surfaces and sharp corners or edges, thereby
greatly opening up the design space. Figure 3 shows an example using both
extensions, where the design task was to find the shape that produces the densest
packing for particles poured into a container (for the limit that the container is large
enough to neglect wall effects) [16]. Friction in this case was turned off in the
simulations, which in experiments corresponds to packings that are vibrated or
tapped sufficiently to reach their asymptotic density.
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Fig. 3. Using evolutionary algorithm to find best-packing particle shape. a: Packing density ¢
as the particle shape evolves. Inset: Basic shape identified as optimal under given packing
conditions. b: Effect of varying the degree of sphere overlap. Adapted from Ref. 16.



In materials such as jammed granular or glassy systems, which inherently exist in
structural configurations far from (thermal) equilibrium, considering boundary and
initial conditions together with the processing path is crucial in finding a proper
solution to a design task. A particular advantage of the method discussed here is
that these aspects are included automatically.

Design Rules. While the approach outlined above provides a way to obtain a
solution for a particular design task, it does not say anything about how the solution
might change if the task changes. Ideally, we would like to have more generally
applicable mappings, which could provide answers for related design problems. We
here call such general mappings design rules. For granular media, developing design
rules constitutes a major challenge since the understanding of how particle shape
affects the aggregate properties currently exists only in limited form for certain
classes of simple particles.

Interestingly, the same search and optimization approach can also be used to
construct design rules [15]. The basic idea behind this is as follows. We assume that
the optimizer is able to find a solution to a specified design target by tuning a given
set of particle-level parameters (understanding that we can only consider design
targets that actually are achievable). In other words, we assume the optimizer can
solve the inverse problem of mapping from design target (aggregate properties,
vertical axis in Fig. 4a,b) to corresponding particle-level parameters (here shown
for simplicity as a single particle shape index, horizontal axis). We then give the
optimizer two very specific tasks: identify particle-level solutions that correspond to
the two extrema in design-target space, i.e., that maximize or minimize the
aggregate properties with respect to a whole class of related design targets (circled
red in Fig. 4a,b).

Once the optimizer identified the particle-level parameters giving rise to the
extrema in aggregate properties, any other (allowed) setting of these parameters
will necessarily produce aggregate properties that are intermediate. For the
purpose of design this has a very important consequence: we can sweep through
design-target space by interpolating between the particle-level parameter values
corresponding to the extrema. Importantly, we can use any interpolation, which
means we are free to pick an interpolation that takes into account additional
considerations, such as ease of implementation in an experiment or in industrial
production.

Figure 4c,d demonstrates the power of this approach. The design task was to find
the particle shape producing a desired target packing density. As before, particles
were formed from up to N = 10 rigidly bonded, frictionless spheres of arbitrary
radius, but in this case without overlap. Under these conditions, not the planar
triangles as in Fig. 3 but “Mouse” trimers (Fig. 4c) form the densest packers, while
in all cases rods produce the loosest aggregates [15]. The sum of the radii of all
spheres constituting a particle, Y.} r;, serves as a suitable particle-level “shape
index”.



While exploring the parameter space during the evolution process, the optimizer
produced a cloud of shape/packing-density relationships (Fig. 4c). However, close
inspection shows that similar target densities can be achieved with shapes that vary
widely, so that there is no obvious way to predict how small changes in desired
target density translate into shape changes.

On the other hand, based on the above considerations, we can sweep through the
full range of possible packing densities by picking any path through shape space, as
long as it starts and ends with the shapes corresponding to the two density extrema.
As an example, Fig. 4d shows a path that starts from the largest N=10 rod (all
spheres of equal size) and simply shrinks the rod length from one end by
successively reducing the size of the outermost sphere, until only one single sphere
is left; at this point the path switches to a second branch (shown in green) which
grows two “ears” on the central sphere, attached at a 70° bond angle and each
increasing in diameter from zero to 1/3 of the main sphere, which are the
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Fig. 4. Design rules for micro-to-macro-level mappings. a: Sketch of mapping. Red circles
indicate extrema in design space. b: Design rules using paths (here two paths) based on
additional criteria such as ease of implementation. c: Packing density ¢ vs. shape parameter.
Points indicate all shapes sampled by optimizer while searching for extrema in ¢
(corresponding extremal shapes are shown in gray). d: Path for design rule developed from (c).
Adapted from Ref. 15.



appropriate parameter values for the particle producing the densest packing with ¢
= 0.67 under the given conditions.

This path establishes a useful design rule because it (a) provides a smooth mapping
of target packing fraction to particle shape in the sense that small variations in ¢
correspond to small changes in shape and thus allows for interpolation, (b) covers
the full range of achievable ¢ values (up to the allowed N=10 in this example), and
(c) is straightforward to implement (as opposed to many of the highly complex
shapes the optimizer parsed through during evolution). We note that for this design
problem the design rule is not everywhere one-to-one, since the path is non-
monotonic in ¢ over a small region: to generate packing densities in the range 0.64-
0.65 one can choose either an asymmetric dimer or a trimer particle shape. From a
practical point of view, this degeneracy is unimportant, given that both shapes
provide a solution to the same packing problem.

Directed Self-Assembly of Block Copolymer Thin Films

Block Copolymers consist of two or more strands, or blocks, of different polymers
covalently bonded together. Blocks containing different chemical compositions tend
to repel each other and, as a consequence, in aggregate these systems tend to
spontaneously micro-phase separate and self-assemble into nanoscale domain
morphologies when driven below their order-disorder transition. The typical
feature size of these domains, 5-100nm, the availability to easily control different
domain morphologies via the relative block sizes and interaction strengths, and the
ability to generate very sharp domain boundaries (of order a nm) has made block
copolymers an attractive choice for a wide range of nanotechnology applications [1].

An important application has been the use of block copolymer thin films for
generating highly regular patterns over large areas on substrates of interest to the
semiconductor industry, and then transferring those patterns into the substrate by
exploiting the differential etch resistance of the blocks. The particular advantage of
this approach is that the patterns self-assemble and thus do not need to be created
by lithographic techniques operating at the same, fine nanometer scale. However, in
order to create patterns that are exceptionally defect-free and that are oriented
along specific directions, the self-assembly process has to be guided, or directed, by
topographic or chemical surface features. Such features could be holes, posts,
trenches or steps, they could be local areas with distinct surface wetting properties,
or they could be areas where a short brush layer has been used to attract one of the
polymer blocks. In all cases they can work with high efficiency even if they are
spaced apart significantly further than the inherent domain spacing of the block
copolymer. Directed self-assembly thus can multiply the feature density, making it
possible to create very fine patterns by using much coarser lithography to generate
the guiding features. Figure 5 shows this schematically for the case of 3x density
multiplication of a striped domain morphology resulting from triblock copolymers
in their lamellar phase. Such highly periodic morphologies are of interest for next
generation semiconductor devices and high-density storage media.
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The directed self-assembly process divides the task of creating a particular
nanoscale pattern into generating the appropriate set of sparse guide features and
then letting the block copolymer interpolate spatially to fill in the gaps between the
features. In particular, one would like to make sure the final pattern self-assembles
robustly with as few defects as possible even in the presence of some (inadvertent)
variability in the pre-fabricated guide features. This immediately implies that
attractive as well as repulsive interactions should not be made too strong, so that
energetic penalties for accommodating such variability do not become prohibitive.
The challenge therefore lies in appropriately tuning the local interaction parameters
that control both the self-assembly and the proper recognition of any guide features.
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Fig. 5. Schematic representation of an approach that uses chemical markers on a
substrate to direct the self-assembly of highly ordered block-copolymer patterns at very
small size scales. Triblock copolymer consisting of blocks of types A and B, linked by
covalent bonds, is sketched at top. a) Stripes of width W are printed at pitch mLo. b)
Block type A preferentially attach to stripes, which leads to an increase in stripe density.
From Ref. 11.

These parameters include the ones that control the geometry of the guide features
(such as the width W and pitch mLo of the guide stripes in Fig. 5), as well as the
interaction type and strength between the various copolymer blocks, and the
interactions between these blocks and the guide features or the background surface.
In practice, these interactions can be tuned via the polymers’ chemical structure and
molecular weight, as well as by modifying the surfaces of the guide features.
Traditionally, this tuning is done through empirical trial and error. More recently,
design approaches using inverse methods have been implemented [8-11, 18]. In
these cases, the forward simulation consists of a numerical engine to solve various
trial morphologies by implementing, e.g., a self-consistent field theory [69], a mean
field model based on the Cahn-Hilliard equation [10], or a theoretically informed
coarse-grain model for block copolymers [70].

As before, the forward simulation is coupled to an inverse process that optimizes
the parameter set in order to achieve a solution that closely approximates the
targeted design. In this regard, our recent work [10, 11, 18] has shown that
evolutionary strategies such as CMA-ES can be significantly faster and more efficient
in finding optimized solutions than inverse methods based on Monte Carlo searches
[8,9].

In a typical design task corresponding to Fig. 5, the type of copolymer, and thus the
block-block interactions, might be given (based on other considerations or
requirements) and the goal is to optimize the guide stripe geometry together with
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the block-stripe and block-background interactions such that the a regular, pristine
lamellar pattern self-assembles most quickly and/or reliably at the desired density
multiplication. A suitable objective function to be minimized in this case is the
mean-square difference between the order parameter of the morphology tested and
the order parameter of the desired target morphology. Another option for an
objective function might be to consider differences in Fourier components, possibly
with different weights for long and short wavelengths modes.

Variations of this design approach might involve tasks where the goal is to find the
minimum number of posts and their positioning in order to self-assemble the
copolymer into more complicated line patterns that can act as templates for
nanoelectronic circuitry [10]. Extensions could include the molecular weights of the
copolymer blocks as variables to be optimized.

A different, particularly powerful application of evolutionary algorithms is to rely on
the strategies that have been outlined so far to interpret experimental data. In this
case, the “target function” is an experimental measurement, and the design engine
must identify the material (and material characteristics) that would generate such
data in the laboratory. A concrete example is provided by scattering experiments. In
the case of block copolymer self-assembly, critical dimension small angle x-ray
scattering (CDSAXS) or grazing incidence small angle x-ray scattering (GISAXS)
could be used to examine samples such as those shown in Fig. 6. The traditional
approach to interpret such data, which is illustrated in the figure, has been to
assume or guess a possible geometric shape for the material morphology, to
calculate the scattering spectrum for such a morphology, and to compare it to the
experimental measurement. The cycle is repeated until convergence, and the fitting
strategy can be implemented within the framework of an inverse Monte Carlo
algorithm [71].
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Fig. 6. Conceptual representation of physics-model based interpretation of x-ray
scattering data, from [71]. The left image represents a diblock copolymer sample
assembled on a pattern consisting of guiding stripes, analogous to that shown in Fig. 5.
The center panel shows the spectra that is collected in CDSAXS experiments of that
sample, and the right panel shows a model, based on a collection of geometric shapes,
that is constructed to reproduce the experimental scattering results (center panel).

An alternative approach is to use a physics based model, be it a self-consistent field
theory or a molecular simulation, to interpret the data. While such a consideration
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would be overly demanding for traditional Monte Carlo-based strategies, by relying
on CMA-ES versions and our more recently proposed variants [10,11,18] it is
possible to interpret scattering in terms of a fully three-dimensional particle based
model that includes fluctuations [72]. Again, we highlight the fact here that, from a
computational point of few, a computational engine is charged with designing a
material that scatters x-ray data in a manner dictated by the experiments. In our
recent work, illustrated in Fig. 7, the design engine basically builds a model of the
system, with as many as 15 ingredients (e.g. stripe width, stripe height and shape,
interaction parameters, composition, molecular weight), that agrees with the target
function, i.e. the experiment.

Objective function

0 25 50 75 100 125
Iterations

Fig. 7. Evolution of objective function during CMA-ES optimization as a function of
number of iterations. A fully three-dimensional particle based model is used to interpret
the scattering data (shown in Fig. 6). The two insets show representative configurations
of the material in the early and late stages of the optimization process, respectively. The
optimization algorithm is tasked with identifying the characteristics of the material and
the pattern (e.g. size, shape, and chemistry of the guiding stripes) that lead to scattering
profiles that agree with experiment. As many as fifteen material and pattern variables
are explored simultaneously to arrive at the best model to describe a target
(experimental) system [72].

Beyond Black Box Optimizers. Inverse methods based on either CMA-ES, Monte
Carlo schemes or simulated annealing typically work in black box fashion, i.e., in
their attempt to minimize the objective function they operate on the space of micro-
level parameters without considering the underlying physics. Furthermore, to run
successfully black box methods typically require the tuning of one or more control
parameters. This brings up the question whether letting the optimizer exploit
certain information about the physics makes it possible to create search engines
that do not require any tuning and at the same time also speed up the optimization
process. We recently were able to show that the answer is yes, at least for design
problems where the underlying physics can be described by models based on
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statistical mechanics [18].

Specifically, in situations where the macro-level outcome depends on the likelihood
for a system to be in a particular micro-level configuration, knowledge of the
probability distribution for these microstates can be used to derive an “equation of
motion” for the parameters that encode these microstates. This equation
deterministically calculates updates along directions of small entropy change in
order to find new, improved parameter values. Since these updates depend only on
expectation values calculated from the microstate statistics, the same equation can
function as a highly efficient optimization algorithm. Methods like CMA-ES and
adaptive simulated annealing deal with the actual configurations only through the
objective function, effectively condensing a vast amount of information into one
parameter. The CMA-ES then creates updates from a Gaussian distributed over all
possible parameter values, while adaptive simulated annealing samples by assigning
an energy value to each parameter choice. In contrast, the new approach solves the
optimization problem in the space of micro-state configurations. It is able to use
information about how fluctuations in configurations correspond to fluctuations in
quality because it has been built to exploit the extra fact that the simulation data
were generated from a known distribution [18]. Importantly, to create the
probability distribution the microstate statistics have to be evaluated only once
during this evolution toward the design goal.
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Fig. 8. Optimized design of block copolymer stripe pattern. As in Fig. 5, the design
target was the identification of optimal interaction and geometric parameters, here with
the goal of 6x density multiplication for a diblock system where the red block prefers the
stripe printed onto the substrate. The graph demonstrates the rapid approach to the
targeted “square-wave” cross-sectional concentration profile (see inset; ¥ is the local
concentration of the blue block). The call-outs show a rendering of intermediate and
final stripe configurations. Adapted from Ref. 18.

The result is a powerful optimizer for a wide range of equilibrium as well as non-
equilibrium problems. Comparing the performance of this new method to standard
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CMA-ES for directed self-assembly problems, where the design task consists of
identifying the optimal stripe width and interaction parameters, we find an
improvement in computation speed of at least fivefold. Figure 8 shows the results
for 6x density multiplication using a PS-PMMA block copolymer.

Outlook

The ideas and algorithms outlined above are actively being pursued for design of
actual processes both in academic settings and industry. Results to date have been
highly encouraging, and these strategies are precursors to what we think could be a
paradigm shift in how soft matter is designed. Consider, for example, designing
multiblock polymer molecules that fold in predictable manners; in doing so, it would
be possible to design molecules that start approaching the structural complexity and
function of proteins. Or consider synthesizing a complex material as its morphology
is probed in situ by scattering techniques, and having the interpretation of the data
occur simultaneously. That would enable cycles of design, synthesis and
characterization that, for the first time, occur truly co-currently, with potentially
extraordinary increases in efficiency and productivity.

Perhaps more importantly, the approaches discussed here are not limited to
equilibrium conditions. In fact, they are extremely effective also far from
equilibrium, where much less is known about materials behavior and design. Not
only can the materials processing pathway be included explicitly, but identifying the
most suitable pathway can become the actual design target. This paves the way for
creating disordered, glassy materials with performance by design. It also paves the
way for macromolecular assembly processes that lead predictably and reliably
towards useful, non-equilibrium morphologies. We posit that it is only by relying on
such design approaches that the materials science community will be able to
harness the full spectrum of structure and function that soft materials have to offer.

We end by noting that, beyond finding customized solutions that solve specific
design tasks, a particular strength of these methods is that they can be extended to
develop more general design rules, which then apply to whole classes of similar
tasks. We showed this explicitly for the case of granular packings, but the same
procedure should be applicable to a wide range of different systems. Finally, the
computational approach we described makes it possible to go beyond quantitative
optimization: the design target can be formulated such that it implies qualitatively
new material properties, and this turns an evolutionary optimizer into a powerful
tool for discovery.
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