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Abstract
Shear thickening is a type of non-Newtonian behavior in which the stress required to shear a fluid
increases faster than linearly with shear rate. Many concentrated suspensions of particles exhibit an
especially dramatic version, known as Discontinuous Shear Thickening (DST), in which the stress
suddenly jumps with increasing shear rate and produces solid-like behavior. The best known
example of such counter-intuitive response to applied stresses occurs in mixtures of cornstarch in
water. Over the last several years, this shear-induced solid-like behavior together with a variety of
other unusual fluid phenomena has generated considerable interest in the physics of densely packed
suspensions. In this review, we discuss the common physical properties of systems exhibiting shear
thickening, and different mechanisms and models proposed to describe it. We then suggest how
these mechanisms may be related and generalized, and propose a general phase diagram for shear
thickening systems. We also discuss how recent work has related the physics of shear thickening to
that of granular materials and jammed systems. Since DST is described by models that require
only simple generic interactions between particles, we outline the broader context of other
concentrated many-particle systems such as foams and emulsions, and explain why DST is
restricted to the parameter regime of hard-particle suspensions. Finally, we discuss some of the
outstanding problems and emerging opportunities.
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1. Overview

In a fluid, the energy dissipation rate under shear is
characterized by the viscosity, defined as the ratio of shear
stress to shear rate during steady flow. For Newtonian
liquids in which the molecules interact in thermodynamic
equilibrium, the viscosity is an intrinsic material parameter
and is independent of the shear rate. Suspending small
particles in a Newtonian liquid can bring about non-Newtonian
behavior. In this case viscosity may vary with shear rate,
and in the field of rheology, where the term viscosity is used
more broadly, the viscosity is usually given as a function
of shear rate. However, the extension of the term viscosity
to non-Newtonian fluids comes at the cost of some of the

generality of the Newtonian viscosity. Non-Newtonian fluids
with large or densely packed particles may be non-ergodic,
meaning the particle arrangements are not necessarily in
thermal equilibrium, but instead can exhibit hysteresis. Thus,
while the viscosity ideally defines a local relationship between
shear stress and shear rate that is valid everywhere in a fluid,
this is not always the case for non-Newtonian fluids.

In some instances the energy dissipation rate decreases
with increasing shear rate, resulting in behavior labeled shear
thinning. For applications such as paints, this is desirable as
it lets pigments flow easily when brushed but minimizes drips
when there is no brushing action. The opposite type of non-
Newtonian flow behavior, in which the energy dissipation rate
increases with shear rate, is shear thickening.
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Figure 1. Snapshot of a person running on top of a pool filled with a
dense suspension of cornstarch and water. The fluid can temporarily
hold up the person’s weight like a solid, sustaining stresses orders of
magnitude beyond the capabilities of the suspending Newtonian
liquid (here water). The suspension behaves liquid-like before and
after impact, for example gravity waves are seen to propagate along
the surface, and without running, the person would sink into the
suspension as in a normal liquid.

To most observers, the whole notion of a liquid becoming
thicker when stirred or sheared is utterly counter-intuitive.
Perhaps the best known, and certainly the most widely
available, material to exhibit dramatic thickening is a densely
packed suspension of cornstarch particles in water. Such
suspensions are sometimes referred to as discontinuous shear
thickeners because of the apparently discontinuous jump in
the viscosity with increasing shear rate. Such a suspension
feels like a liquid at rest, but when stressed or sheared,
its resistance to flow increases dramatically and it appears
to take on solid-like properties; for example, a person can
run across the surface of a pool filled with a suspension of
cornstarch in water without sinking in (figure 1). Other notable
solid-like phenomena observed in dense, shear thickening
suspensions include cracking of the fluid under impact (Roché
et al 2013), and the formation of stable macroscopic structures
under vibration (Merkt et al 2004). This shear thickening
is completely reversible; once the stress is removed, the
suspensions relax and flow like any other liquid.

The remarkable increase in flow resistance of shear
thickening suspensions can cause problems in their industrial
processing, such as jamming when they are extruded through
small openings, or even breaking of mixing equipment (Barnes
1989). On the other hand, one useful property of such
suspensions is that they can provide remarkably effective
energy dissipation. This has opened up new opportunities for
use in flexible protective gear ranging from sports padding to
stab-proof vests that protect the wearer by becoming semi-rigid
in response to impact, while otherwise remaining fluid-like and
flexible to allow freedom of movement (Jiang et al 2013, Lee
et al 2003, Petel and Higgins 2010).

Despite the fact that shear thickening is typically referred
to as less common than its counterpart, shear thinning, it has
in fact been observed across a very broad range of colloidal
and non-colloidal suspensions, with hundreds of publications
in the scientific literature since the 1930s. It was even sug-
gested by Barnes in his influential 1989 review that perhaps all

suspensions could exhibit shear thickening under the right con-
ditions (Barnes 1989). Consequently, one of the key problems
in the field since then has been to develop general models.

What makes the thickening phenomenon particularly
intriguing from a fundamental science perspective is that all its
hallmarks can be exhibited already by the very simplest type
of suspension, namely hard spheres suspended in a Newtonian
liquid. However, it has been a challenge to understand why
strong shear thickening tends to be observed in densely packed
suspensions of non-attractive hard particles, but has not been
observed in suspensions of attractive particles, or complex
fluids consisting of soft particles. This has been particularly
puzzling, since proposed mechanisms have focused on very
general features such as microstructural changes under shear
with corresponding changes in lubrication forces and other
interactions between particles (Brady and Bossis 1985, Brown
and Jaeger 2012, Hoffman 1974). Understanding how such
a simple combination of ingredients leads to such dramatic
behavior and developing quantitative predictions that can
apply to such a wide range of suspensions, while accurately
identifying the parameter regime under which shear thickening
is observed, has remained a fundamental problem that modern
models of shear thickening have tried to address.

In the time before Barnes’ review, shear thickening
was studied mainly in the chemical engineering community,
motivated by multiphase fluid processing problems. Since
then, there has been renewed interest from the soft condensed
matter physics community, much of it motivated by connecting
shear thickening systems to other soft matter systems through
the universal concept of jamming. In jamming, a fluid–solid
phase transition occurs due to system-spanning networks of
particle contacts when the particle density increases (Cates
et al 1998, Liu and Nagel 1998). This and other concepts
coming from granular physics have injected new ideas into the
field and have led to revised models for shear thickening.

Furthermore, over the last decade new experimental
techniques have been developed that can probe the dynamical
structure of the particle sub-phase in situ, while the suspension
is being sheared. This includes x-ray and neutron scattering
techniques (Maranzano and Wagner 2002) as well as direct
observation of individual particles by confocal microscopy
(Cheng et al 2011). With increases in computational power,
simulations can now deal with significant particle numbers
and system sizes (Fernandez et al 2013, Melrose and Ball
2004a, Nazockdast and Morris 2012, Seto et al 2013, Wagner
and Brady 2009). These advances have made it possible
to investigate microstructural changes at the onset of shear
thinning or thickening and thus test models at the particle level.

This review focuses mostly on the progress since
Barnes’ paper, emphasizing discontinuous shear thickening
and dynamic phenomenology in dense suspensions. While
much progress has been made, there is still contention in the
literature about the mechanism(s) that are responsible for the
observed dramatic increases in shear stress in discontinuous
shear thickening. Recent publications are roughly split
evenly in attributing this shear thickening to three different
mechanisms. One mechanism is hydroclustering, where
particles tend to push together into clusters under shear and
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this rearrangement leads to increased lubrication drag forces
between particles (Brady and Bossis 1985, Wagner and Brady
2009). A second mechanism is an order–disorder transition,
in which the flow structure changes from ordered layers to a
disordered structure, which also results in an increase in drag
forces between particles (Hoffman 1974). A third mechanism
is dilatancy, in which the volume of the particulate packing
increases under shear, which pushes against the boundaries
and can result in additional stresses from solid–solid friction
(Brown and Jaeger 2012). With this review, we hope to bring
the community closer to a consensus on the role and range of
applicability of each of these mechanisms3. We will discuss
these mechanisms and the issues of contention in detail in later
sections, but some of the issues are worth bringing up now.

One of the major issues is whether the hydroclustering
mechanism, which accurately describes a weaker form of
shear thickening (known as ‘continuous’) in less densely
packed suspensions, can also explain discontinuous shear
thickening and associated phenomena in more densely packed
systems. It seems likely that hydroclustering is a trigger for
the onset of shear thickening, yet the incredibly high stresses
observed in discontinuous shear thickening are too large to
be explained by lubrication forces. They appear to be better
explained by a fabric of stress paths that span the system
and support normal stresses of similar magnitude as the shear
stress, a situation familiar from granular matter (Jaeger et al
1996). An interesting consequence for dense, hard sphere
suspensions is that boundaries play a critical role and extremely
strong thickening is not an intrinsic bulk material response.
Hand in hand with this behavior likely come other ‘granular’
features, such as an inherent heterogeneity and propensity
for strain localization (‘shear banding’) (Smith et al 2010).
To sort this out, more attention will need to be focused on
the connections between local and global rheology in these
systems.

A second issue concerns particle size. Can the same
mechanisms explain shear thickening in both Brownian
colloids and non-Brownian suspensions despite the fact that
the particle microstructure dynamics are very different?
Traditionally, the prevailing answer has been no. We
have recently introduced a new perspective, focused on
consideration of the dominant stress scales, which suggests that
in many situations Brownian and non-Brownian suspensions
can be understood in similar terms (Brown et al 2010a, Brown
and Jaeger 2012).

This review will also cover some of the dynamic, non-
steady-shear phenomena commonly associated with shear
thickening and discuss to what extent they are related to
standard, steady-state shear thickening. One example are the
stable macroscopic structures that emerge under vibration,
which can be attributed to hysteresis in the viscosity curve
(Deegan 2010). Another example concerns the explanation
of the most dramatic behavior commonly associated with
shear thickening—why a grown person does not sink in when
jumping onto or running across a dense suspension of, e.g.,
cornstarch in water (Waitukaitis and Jaeger 2012). Recent

3 Full disclosure: the authors have been proponents and developers of the
dilatancy mechanism in their previous work.

results revealed that this phenomenon is closely connected
to a dynamic form of jamming but not the same response as
steady-state shear thickening. The fact that these realizations
have been made only in the past few years highlights that,
historically, the vast majority of work on non-Newtonian
thickening has focused on simple, steady-state shear. The
recent influx of interest in jamming from soft matter physics
has been a main source of motivation for investigation of
dynamic or transient jamming phenomena, and this trend
may lead to new insights also into well-known suspension
phenomena. At the same time it opens up new opportunities
to explore jamming in a different context.

This review is structured as follows. In section 2, we
introduce some basic concepts and definitions of rheology.
Section 3 defines and characterizes the various types of shear
thickening that have been reported in the literature. In
section 4 we outline the main mechanisms that have been
proposed to explain shear thickening. Section 5 shows some
of the important scalings of stresses in shear thickening,
and discusses how much of the rheology can be interpreted
in terms of dominant stress scales. A state diagram is
introduced that delineates the region of observable shear
thickening behavior. In section 6, we broaden the scope
and discuss connections to jamming as well as granular
materials and other many-particle complex fluids, including
foams and emulsions. Section 7 discusses in detail the
consequences of the fact that the rheology can be determined
by boundary conditions and a global structure, as opposed to
an intrinsic rheology determined by the local microstructure.
Dynamic phenomena often associated with shear thickening
are described in section 8. We close with a summary and some
key outstanding issues and opportunities.

2. Introduction to rheology

The fundamentals of rheology can be found in a number of
textbooks (Mewis and Wagner 2012), but we include some
relevant information here. The viscosity η of a complex fluid
relates the shear stress τ in a steady flow to the shear rate
γ̇ via τ = ηγ̇ . Some examples of different types of τ(γ̇ )

are sketched in figure 2. On a log–log scale, a Newtonian
regime has slope 1, shear thinning regimes correspond to slopes
∂ log τ/∂ log γ̇ < 1, and shear thickening regimes correspond
to slopes ∂ log τ/∂ log γ̇ > 1. Depending on the types of
particles and suspending fluids and their material parameters,
different regimes are observed in different ranges of shear rate.
We note that a single complex fluid may exhibit several regimes
and can exhibit both shear thinning and shear thickening. On
the other hand, depending on the material parameters, not all
suspensions exhibit all regimes.

An approximation that is useful for interpretation of
rheological curves is that interparticle forces originating with
different mechanisms add together to produce the net relation
between shear stress and shear rate. For example, many
complex fluids exhibit a yield stress, corresponding to a critical
stress that must be applied before the shear rate becomes non-
zero. This results from stable static structures which can be
due to a number of different forces including but not limited
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Figure 2. Sketch of different possible regimes of shear stress τ versus shear rate γ̇ for suspensions, plotted on a log–log scale. Various
contributions to stresses and their associated particle arrangements are indicated for different regimes of flow response to applied shear:
shear thinning, Newtonian, and shear thickening. A particular complex fluid may exhibit several of these regimes, depending on material
properties and dominant forces. Figure based on Brown and Jaeger (2011). Copyright 2011 The American Association for the Advancement
of Science.

to interparticle attractions (Pham et al 2008, Trappe et al
2001), repulsions from an electrostatic potential (Maranzano
and Wagner 2001a), steric (solid particle) repulsion (Hoffman
1998, Mewis and Biebaut 2001, O’Hern et al 2003),
gravitational pressure (Brown and Jaeger 2012, Fall et al 2009),
and attractions from induced electric or magnetic dipoles
(Brown et al 2010a). The scale of the yield stress can
be estimated as the scale of the force between neighboring
particles divided by the cross-sectional area of a particle
when the particle packing density is high enough to support
percolating structures. These fluids exhibit strong shear
thinning beyond the yield stress as the total shear stress remains
largely independent of shear rate, and may exhibit Newtonian
or shear thickening behavior at higher shear rates once other
sources of stress exceed the yield stress.

If the particles in a complex fluid are smaller than about
1 µm, they experience Brownian motion and an effective
repulsive pressure from entropic forces. Such fluids may have
a Newtonian regime at low shear rates, followed by shear
thinning, followed by a second Newtonian regime at higher
shear rates. Shear thickening may result at higher shear rates
if some mechanism produces stresses that increase faster than
linearly with shear rate. The different types of shear thickening
will be discussed in more detail in section 3. Despite the
differences among different complex fluids, in all cases the
broader problem in rheology consists of how to attribute fluid
properties to particle interactions and material properties on the
one hand and microstructural changes in the fluid on the other.

In the above examples of Newtonian and shear thinning
behavior, as well as hydrocluster-based shear thickening, the
relationship between shear stress and shear rate is understood to
be true locally at every point in the fluid. However, the situation
turns out to be more complicated for other types of apparent
shear thickening: inertial and dilatant. The relationship
between shear stress and shear rate is traditionally obtained
by a rheometer which measures the drag force on a moving
surface at the boundary of the fluid as a function of the tool

velocity. The local relationship between shear stress and shear
rate can be inferred based on the geometry of the flow region,
using the assumptions that the fluid is homogeneous, the flow
profile is laminar, and the local shear stress is purely a function
of the local shear rate. It turns out that these assumptions
are violated for inertial and dilatant shear thickening, with
significant consequences for the interpretation of the behavior.
This issue will be revisited in section 3.3, following a more
detailed descriptions of the different types of shear thickening
and the mechanisms proposed to describe them.

3. Characterization of different types of shear
thickening

Shear thickening is technically a category of non-Newtonian
behavior, corresponding to any rheology in which the
effective viscosity increases with shear rate. Since there are
several different types of shear thickening, each characterized
by certain defining features and likely due to different
mechanisms, we first summarize the basic features of some
of the main types of shear thickening reported.

3.1. Continuous shear thickening

The degree to which the viscosity increases with shear rate
depends on the volume fraction of solid particles, also referred
to as the packing fraction φ. Shear thickening is generally
not observed in dilute suspensions, but starts to gradually
appear at intermediate packing fractions, typically around
0.3 � φ � 0.4 for suspensions of solid spheres (Melrose and
Ball 2004a, Nazockdast and Morris 2012, Wagner and Brady
2009). At these particle concentrations, the viscosity increase
is relatively mild, perhaps up to several tens of per cent over
the few decades of shear rates observed in typical experimental
settings (see the green curve in figure 2 for a comparison to
other types of shear thickening). This type of shear thickening
is often referred to as ‘continuous’. The rate of increase
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in viscosity with shear rate gradually becomes larger with
increasing packing fraction, and it is usually found that the
shear thickening regime starts at a critical stress τmin which
is roughly independent of packing fraction (Gopalakrishnan
and Zukoski 2004, Laun 1984, Maranzano and Wagner 2001a,
Wagner and Brady 2009). Below this stress, shear thinning or a
Newtonian regime may be found, depending on the suspension.

3.2. Discontinuous shear thickening

In many shear thickening fluids, the viscosity increase with
shear rate continues to become steeper with increasing packing
fraction, up to the point that the viscosity and shear stress
appear to jump discontinuously by orders of magnitude beyond
a certain shear rate (such as the red curve in figure 2). In
such cases it is often said that the shear thickening evolves
from continuous to discontinuous shear thickening with
increasing packing fraction. This so-called Discontinuous
Shear Thickening (DST) has the most dramatic increase in
viscosity of any type of shear thickening, and includes the
prototypical example of cornstarch in water as well as many
other densely packed hard-particle suspensions (Barnes 1989,
Bender and Wagner 1996, Bertrand et al 2002, Boersma et
al 1990, Brown and Jaeger 2009, Brown et al 2010a, 2010b,
Egres and Wagner 2005, Egres et al 2006, Fall et al 2008,
Frith et al 1996, Hoffman 1972, 1974, 1982, Laun 1994, Lee
and Wagner 2006, Lootens et al 2003, 2005, Maranzano and
Wagner 2001a, 2001b, 2002, Metzner and Whitlock 1958,
O’Brien and Mackay 2000, Shenoy and Wagner 2005), and
solutions of micelles (Hofmann et al 1991, Liu and Pine 1996).
An example of the evolution from continuous to discontinuous
shear thickening with packing fraction is shown in figure 3.

The DST suspensions mentioned above tend to have
several rheological properties in common that provide
considerable insight into the possible mechanisms and help
distinguish different phenomena. One such property is that
the DST regime tends to occur in a well-defined range of
shear stress. The onset of the shear thickening regime can be
characterized by the same critical stress τmin that is roughly
independent of packing fraction as with continuous shear
thickening (see figure 3(b)). Once started, the viscosity
or shear stress increase does not continue indefinitely with
increasing shear rates. Instead, the shear thickening regime
ends at a maximum stress scale τmax, also roughly independent
of packing fraction (Brown and Jaeger 2009, Frith et al 1996,
Maranzano and Wagner 2001a, Shenoy and Wagner 2005).
Above this stress, shear thinning, cracking, and breakup of the
suspension are often observed (Laun 1994).

A second common property has to do with the scaling
of the slope of τ(γ̇ ) in the shear thickening regime. The
apparently discontinuous jump in the viscosity or shear stress
with shear rate tends to be observed only over a range of
packing fractions a few per cent below a critical packing
fraction φc in very densely packed suspensions, typically
around φc ≈ 0.6 for nearly spherical particles (Brown and
Jaeger 2009, Egres and Wagner 2005, Maranzano and Wagner
2001a). This critical packing fraction corresponds to the
jamming transition, above which the system has a yield stress
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Figure 3. Representative viscosity curves showing the evolution of
DST with increasing packing fraction. The suspension consists of
cornstarch in a solution of 85% glycerol and 15% water by weight,
with different mass fractions φm (proportional to φ) shown in the
key. (a) Shear stress τ versus shear rate γ̇ , in which shear
thickening is defined by the region with slope greater than 1. The
evolution to apparently discontinuous viscosity curves can be seen
as the mass fraction increases toward φc. Above φc, the suspension
becomes a yield stress fluid. (b) Same data, replotted as viscosity η
versus τ . The latter format better shows the gradual evolution of the
increasing slope in the shear thickening regime, confined in the
stress range between τmin and τmax. When plotted as η(τ), a slope
greater than zero corresponds to shear thickening, and a slope of 1
corresponds to a discontinuous jump in τ(γ̇ ). Figure based on
Brown and Jaeger (2012). Reproduced with permission. Copyright
2012 American Institute of Physics.

like a solid (Liu and Nagel 1998). The value of φc can vary with
particle shape and a number of other suspension properties, but
the proximity to this point generally controls the slope of shear
thickening regime like a second order phase transition; the
slope of τ(γ̇ ) diverges at φc (Brown and Jaeger 2009, Brown
et al 2010b). This critical point will be discussed in more detail
in section 6.

3.3. Local versus global descriptions of rheology and
nomenclature

There is a major distinction between the local relation linking
shear stress and shear rate and the energy dissipation rate
measured by a rheometer for DST suspensions just described.
It has been found that the local shear stresses between
neighboring particles are frictional and thus proportional to
the local normal stress, which can depend on the boundary
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conditions, and the global structure of a transiently jammed
system is required to sustain these contacts (to be discussed
in detail in section 5.2). These contributions can be separated
from purely hydrodynamic contributions to the shear stress
using modern optical microscopy and high-precision normal-
force-controlled measurements (Brown and Jaeger 2012). In
this situation, the local shear stress is not simply a function
of the shear rate. When these global effects are separated
from the local relationship between shear stress and shear rate,
surprisingly the local τ(γ̇ ) relationship can be Newtonian or
even shear thinning. This is possible, because all of the stresses
that were responsible for shear thickening originate from non-
local structure and boundary conditions, and the direct local
dependence is on the normal stress which is not linked to shear
rate (Brown and Jaeger 2012). This was found to be true for the
prototypical shear thickener cornstarch in water, among other
DST suspensions.

As a result, a subtle problem emerges with the
nomenclature for DST. While the modern trend in the rheology
community has been to define rheology based solely on local
stress relationships, only recent technological improvements
in measuring techniques have allowed experiments to observe
local structure and directly test local relationships. The
literature going back to the 1930s refers to shear thickening
based on global rheometer measurements from which the local
stresses and shear rates were inferred based on assumptions
that are now known to be over-simplified. Therefore, the term
‘shear thickening’ is technically incorrect when applied to the
majority of the existing literature on the subject, including the
prototypical cornstarch in water suspension.

To avoid a major revision of the existing literature, we
prefer to keep the term ‘discontinuous shear thickening’, but
use it in capitalized form ‘Discontinuous Shear Thickening’
(DST). This allows us to put a label to a phenomenon that
has the well-defined characteristics outlined in section 3.2, but
is not necessarily ‘shear thickening’ in terms of a local τ(γ̇ )

relationship. Strictly speaking, even the term ‘discontinuous’
may not be an accurate description of the rheological curve,
since when τ is the control parameter it can be seen that
the viscosity curve evolves continuously (figure 3) and only
becomes discontinuous in the limit of φc (Brown and Jaeger
2009, Brown et al 2010b).

The use of a proper name rather than the generic descriptor
‘discontinuous shear thickening’ also helps distinguish this
phenomenon from other types of shear thickening that may
appear discontinuous, but have properties that would suggest
different mechanisms. Examples include dramatic irreversible
shear thickening, in some cases attributable to chemical-
attraction-induced aggregation (Larsen et al 2010, Osuji et al
2008). Others occur only as transient behavior (Fall et al 2010)
or require the application of strong electric or magnetic fields
(Tian et al 2011).

3.4. Inertial effects

One type of apparent shear thickening is characterized by a
scaling τ(γ̇ ) ∝ γ̇ 2 in the limit of high shear rates. First
described by Bagnold (1954), it has since been reported in a

wide variety of rheology experiments including different flow
geometries (Fall et al 2010, Hunt et al 2002). The dependence
on packing fraction is relatively weak compared to DST, and
tellingly, this behavior can even be observed in pure Newtonian
liquids (zero particle packing fraction) at high shear rates
(Brown and Jaeger 2012). While various detailed descriptions
have been given for this scaling behavior, in general it can
be attributed to inertial effects such that the force required
to displace a mass of material scales as velocity squared in
the limit of high speeds. The transition from a Newtonian
scaling (τ ∝ γ̇ ) to an inertial scaling (τ(γ̇ ) ∝ γ̇ 2) has been
characterized in terms of a Reynolds number, Bagnold number,
or Stokes number, which are all equivalent in terms of their
scalings with γ̇ , although the prefactors vary (Trulsson et al
2012). There can also be a scaling regime where τ ∝ γ̇ 3/2

that exists for a partially inertial flow at intermediate Reynolds
numbers between about 100 and 103 (Brown and Jaeger 2012).

Perhaps the most developed and general description for
this inertial behavior is in terms of the Reynolds number and
turbulence. Here the inertial scaling (τ ∝ γ̇ 2) comes from
the momentum advection term in the Navier–Stokes equations,
which is dominant for any fluid at high shear rates and Reynolds
numbers. In this regime, inertia leads to flow instabilities
which result in a non-laminar flow and can include counter-
rotating eddies on various scales. These eddies increase the
local shear rate within the fluid compared to a laminar flow
and are responsible for the increased rate of energy dissipation,
which explains why this behavior can be observed even for
a pure Newtonian liquid. Since it is widely known that the
increase in energy dissipation rate occurs because the flow
profile becomes non-laminar, rather than because of a change
in the local τ(γ̇ ) relationship, these inertial effects are typically
not referred to as shear thickening. However, this convention
is not universal and in some publications such effects are still
referred to as shear thickening (Bagnold 1954, Fall et al 2010).

3.5. Distinction between different types of shear thickening

One practical way to distinguish different types of shear
thickening is by fitting a power law τ ∝ γ̇ α to obtain the
exponent α. A Newtonian flow corresponds to α = 1.
Inertial effects correspond to α = 2 in the limit of high shear
rates, independent of packing fraction. DST is characterized
by large α which approaches infinity as the critical packing
fraction φc is reached. On the other hand, continuous shear
thickening is typically characterized by α only slightly larger
than 1, approaching 1 in the limit of zero packing fraction.
While there is not a sharp transition between continuous and
discontinuous shear thickening (α increases continuously with
packing fraction), the former usually evolves into the latter
as the packing fraction is increased. In practice, systems are
often referred as to discontinuous if α � 2 and increasing with
packing fraction, and continuous if 1 < α � 2.

4. Proposed mechanisms

4.1. Hydroclustering

The hydrocluster mechanism was first introduced by Brady and
Bossis in 1985 (Brady and Bossis 1985). The basic concept is
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Figure 4. Instantaneous configurations of transient clusters in the
shear thickening regime, observed using fast confocal rheology.
Different colors indicate different clusters. Particles outside the large
clusters are drawn with smaller size for clarity. Figure reproduced
from Cheng et al (2011). Reproduced with permission. Copyright
2011 The American Association for the Advancement of Science.

that particles are pushed into each other by shear, and to move
away from each other they must overcome the viscous drag
forces from the small lubrication gaps between neighboring
particles. This suggests a critical shear rate above which
particles stick together transiently by the lubrication forces
and can grow into larger clusters. At lower shear rates, the
particles’ motions are more independent. The large clusters
result in a larger effective viscosity, so this critical shear rate
γ̇min and a corresponding shear stress τmin signal the onset of
shear thickening. Hydroclustering is covered more thoroughly
in a recent review (Wagner and Brady 2009). This mechanism
has produced viscosity curves in quantitative agreement with
measurements for continuous shear thickening, in terms of
both the critical shear rate and the magnitude of the increase
in viscosity (Bergenholtz et al 2002, Melrose and Ball 2004a,
Nazockdast and Morris 2012). Furthermore, recent confocal
rheology measurements have made it possible to directly
observe clusters coinciding with the shear thickening regime,
shown in figure 4 (Cheng et al 2011).

It is often assumed that this model for shear thickening
will produce discontinuous shear thickening at higher packing
fractions, as particle clusters get larger and potentially span
the system. However, calculations and simulations based on
the hydrocluster model so far have not been able to produce
a viscosity increase greater than about a factor of 2, far less
than the orders of magnitude increases in viscosity observed
in experiments. A key difficulty is that both calculations
and simulations become increasingly more difficult at higher
packing fraction and therefore have not been done close to the
jamming transition. Thus, it remains an open question whether
hydroclustering can lead to the steep viscosity curves that are
the defining feature of DST.

The major quantitative tests of the hydrocluster model
so far have focused on the onset stress for shear thickening,
τmin. Since this has agreed with experiments for a wide
variety of both continuous and discontinuous shear thickening
systems, it has been widely interpreted as evidence for the
general validity of the hydrocluster model. However, a
deeper investigation unveils that all of the different models
for shear thickening predict the same onset stress scales.
Understanding the significance of this requires a discussion in
the context of the other mechanisms, to which we will return in
section 5.1.

4.2. Order–disorder transition

The order–disorder transition mechanism was first identified
and developed by Hoffman (1974, 1982). He found that in
some cases a transition to DST coincides with a transition in
the microstructure from ordered layers at lower shear rates to
a disordered state at higher shear rates. Like the hydrocluster
model, this scenario has been successful at predicting the onset
shear rate γ̇min.

However, it has been shown definitively that DST can
occur without an order–disorder transition (Egres and Wagner
2005, Egres et al 2006, Maranzano and Wagner 2002).
Thus, while the order–disorder transition is a possible way
in which a microstructural reorganization coincides with shear
thickening, it is not a required mechanism.

4.3. Dilatancy

It has long been known that dilatancy is observed along with
DST (Metzner and Whitlock 1958, Reynolds 1885). Dilatancy
also is a feature of dense granular flows in which, when sheared,
the particles try to go around each other but often cannot take a
direct path, so their packing volume expands (dilates) (Onoda
and Liniger 1990, Reynolds 1885). In fact, in some of the
early literature ‘dilatancy’ was used as a synonym for shear
thickening (Barnes 1989, Freundlich and Roder 1938, Metzner
and Whitlock 1958), but this fell out of style after a landmark
paper by Metzner and Whitlock (1958). They confirmed that in
many cases the onset of dilatancy and DST coincided, but that
in some suspensions dilatancy could be observed without shear
thickening. Since this ruled out a one-to-one correspondence,
it was concluded in the rheology community that dilatancy
should not be considered directly related to shear thickening.
For about 40 years following this result, many of the major
papers on shear thickening dropped the connection to dilation
in favor of hydrodynamic descriptions (Brady and Bossis
1985, Hoffman 1982). However, there is another possible
interpretation of the work of Metzner and Whitlock (Brown
and Jaeger 2012). Inductively, their observations suggested
that dilation was necessary but not sufficient for DST. Recent
work has identified additional conditions that can explain why
DST is not always observed along with dilation: in many
suspensions shear thickening can be hidden by a yield stress or
other source of shear thinning behavior (Brown et al 2010a).

Much recent work has led to a reconsideration of dilatancy
as a mechanism for shear thickening and culminated in the
development of a model that explains how dilatancy can lead
to DST (Brown and Jaeger 2012, Cates et al 2005b, Fall
et al 2008, Holmes et al 2003, Lootens et al 2003, 2005,
O’Brien and Mackay 2000). The basic idea is that when
dilation of granular shear flows is frustrated by boundary
conditions that confine the suspension, shear results in normal
stresses against the boundaries. Confinement can provide an
equal and opposite restoring force which is transmitted along
frictional (solid–solid) contacts between neighboring particles
that participate in a fabric of force chains. The frictional
contacts produce shear stresses proportional to normal stresses,
enabling the dramatic increase in shear stress with shear rate
associated with DST (Brown and Jaeger 2012).
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This model has been developed to the point of
quantitatively predicting both the lower and upper stress
bounds on the shear thickening regime, τmin and τmax, discussed
in detail in section 5. Like the other models, it still does not
quantitatively predict the slope of the viscosity curves. But
it is able to explain the normal force measurements observed
in DST systems, and an unusual dependence on the boundary
conditions, which will be discussed in section 5.2.

4.4. Equation of state models

There are several phenomenological models of shear
thickening that use equations of state to establish the
relationship between stress and shear rate. For example,
Cates and coworkers have used a scalar differential equation
with an effective temperature to drive the dynamics (Head
et al 2001, Holmes et al 2003, 2005). To produce shear
thickening, this model requires an ad hoc assumption that
the effective temperature decreases with increasing stress. In
another model, an appropriately chosen constitutive relation
between pressure, shear rate, and packing fraction in frictional
and lubrication flow regimes leads to a crossover regime
corresponding to DST (Wyart and Cates 2013). Another
model uses a microstructural state variable that varies with
stress, which can lead to shear thickening if this variable is
assumed to have a critical point (Nakanishi et al 2012). These
models have made several predictions such as hysteresis in
τ(γ̇ ) whereby the critical shear rate or stress for the onset
of shear thickening differs depending on the direction of the
time derivative of the shear rate or stress (Head et al 2001).
This hysteresis is commonly observed in measurements of
shear thickening (Cates et al 2005b, Deegan 2010). A further
interesting prediction has been the occurrence of oscillations
between high and low branches of the viscosity curve (Aradian
and Cates 2006, Nakanishi et al 2012). This prediction has
recently been confirmed in experiments (Nagahiro et al 2013).

5. Stress scales

5.1. Onset stress

The major quantitative test and success of both the hydrocluster
and order–disorder transition models has been the prediction
of the onset shear rate γ̇min. Experiments have revealed
that the onset shear rate varies with suspension viscosity—
which depends on packing fraction as well as the suspending
liquid viscosity—such that the onset of shear thickening is
more simply characterized by an onset stress τmin = ηγ̇min

that is roughly independent of packing fraction and liquid
viscosity (Brown and Jaeger 2009, Frith et al 1996, Maranzano
and Wagner 2001a, Shenoy and Wagner 2005). Thus, it is
simpler to discuss the scaling of the onset of shear thickening
in terms of this stress scale τmin, which then can be more
directly related to the different forces between neighboring
particles in densely packed suspensions. We will further argue
that such a description of shear thickening in terms of stress
scales does not only enable a distinction between different
mechanisms of stress transfer, i.e. viscous drag versus solid–
solid friction between particles, but also allows for a more

general description of shear thickening mechanisms that apply
across a range of parameters regimes, each with different
dominant stresses.

In early models for Brownian colloids the onset of DST
was described by a critical Peclet number Pe = 6πηlγ̇ a3/kBT

for a particle size a, liquid viscosity ηl , and thermal energy
kBT . Shear thickening was expected to occur for Pe � 100
as the shear stress overcomes thermal diffusion of the particles
(Bergenholtz et al 2002, Farr et al 1997). This model has been
successful at calculating the onset of shear thickening for both
continuous shear thickening and DST when written in terms of
a stress scale τmin = 50kBT/3πa3, independent of the liquid
viscosity (Gopalakrishnan and Zukoski 2004, Maranzano and
Wagner 2001a).

For colloids where repulsions from a zeta potential are
dominant the above model had to be modified (Maranzano
and Wagner 2001a). In that case, the particular scaling found
was a stress characterizing electrostatic repulsions between
neighboring particles. While the forces were calculated
at a distance corresponding to an effective hydrodynamic
radius obtained from a force balance between viscous and
electrostatic forces, calculating at a different radius would only
have changed the result by a scale factor of order 1. Since the
model was an order-of-magnitude calculation, it would have
resulted in just as good a match with the data if a different radius
was used. In the end, the modifications to the hydrodynamic
model required to fit it to the data resulted in completely
eliminating any dependence on hydrodynamic parameters such
as viscosity or shear rate. The associated stress scale is thus
not specific to hydrodynamic mechanisms for stress transfer,
as any type of forces transferred through a continuum system
can be expressed in terms of a stress.

With several relevant forces in colloids and suspensions,
each of which could be dominant in different cases, a variety
of different scalings for the onset have been found. The
common trend is that the onset can be described more
simply in terms of a stress scale (rather than a shear rate)
independent of packing fraction and set by some dominant
force in the system. Depending on the parameter range,
this dominant force could be Brownian motion (Bergenholtz
et al 2002), zeta potential (Maranzano and Wagner 2001a),
particle–liquid surface tension (Brown et al 2010a, Taylor
2013), induced dipole attractions (Brown et al 2010a), or steric
repulsion (Hoffman 1998), among others. Notably, in each
case hydrodynamic terms such as shear rate and viscosity
were absent from the modified scalings which match the
experiments, so this suggests hydrodynamics-based models
are not necessary to determine the onset of DST as initially
envisioned by the Peclet number scalings. In all cases, the
onset of shear thickening has been rationalized in terms of
a stress scale τmin, although the value of τmin depends on a
dominant stress scale of the system.

Here we discuss the onset stress scalings in the most
general terms possible. The common feature of the
aforementioned scalings for the onset stress τmin is that the
shear stress must exceed all local stress barriers that are
responsible for preventing relative shear between particles.
The significance of this is that local shearing between grains
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can lead to dynamic particle contacts, dilation, increased
confining stresses, and frictional stresses, all of which can then
be observed as shear thickening. In the simplest cases, these
stress barriers can come from particle attractions from various
sources, including particle–liquid surface tension and induced
attractions from external fields (Brown et al 2010a). In each of
these cases the attractions resulted in a yield stress on the same
scale as τmin due to the attractions. The scale of τmin was set by
the shear stress required to overcome roughly the two-particle
attractive force (per cross-sectional area of a particle) to shear
them apart.

This picture can also apply to colloids with a repulsive
electrostatic potential. While attractive particles may have to
be pulled apart to shear, repulsive particles may have to be
pushed around each other to shear. If the particles push against
each other they end up pushing against all of the confining
stresses, whose net response is still determined by the softest
component of the system. This means we expect the onset
stress to be set by the scale of the two-particle interaction
stress scale regardless of whether it is attractive or repulsive.
The similar behavior for both attractive and repulsive particles
is analogous to jammed systems (O’Hern et al 2003). For
colloids stabilized by an electrostatic zeta potential ζ , the
observed scaling for τmin is proportional to the electrostatic
repulsive force per cross-sectional area of a particle 16εζ 2/a2

for a liquid permittivity ε (Hoffman 1998). This scaling
is also consistent with predictions which were based on
hydrodynamic models up to a dimensionless coefficient of
order 1 (Hoffman 1982, Maranzano and Wagner 2001a).

In suspensions of particles large enough to settle the scale
of τmin is set by gravity rather than attractions (Brown and
Jaeger 2012). The shear stress needs to be enough to exceed
the weight of a particle per cross-sectional area to overcome
friction. This follows the rule of dominant stress scales, despite
the fact that such suspensions are inhomogeneous.

In the Brownian-motion dominated regime, the onset
stress τmin, as shown above, corresponds to the osmotic
pressure, which is an effective repulsive stress between
neighboring particles. Again, this scaling was originally
derived from hydrodynamics-based models, but again the
hydrodynamic terms cancel out. It is notable that this scaling
for the onset works both for continuous shear thickening
and DST (Gopalakrishnan and Zukoski 2004, Maranzano and
Wagner 2001b). The generality of the onset scalings arises
because the scalings for τmin are set by mechanisms for shear
thinning which are independent of the mechanisms for shear
thickening. Either type of shear thickening can be hidden
until the stresses from shear thickening mechanisms exceed all
stresses from shear thinning mechanisms (Brown et al 2010a).
This argument is simply based on which stresses are dominant,
so it is not specific to a particular mechanism or to whether the
shear thickening is discontinuous or continuous.

The fact that the onset stress can be described by such
a general argument in terms of the dominant stress scales
without the need to specify microstructure or the mechanism
of force transfer means that the onset stress cannot be used
to distinguish between the different mechanisms proposed
for shear thickening. In particular, the quantitative models

(hydroclustering, order–disorder transition, and dilatancy) all
predict the same stress scale for the onset of shear thickening.
All three have been observed to go along with different
manifestations of shear thickening, and so it seems that they
are all valid, albeit not unique, microstructural mechanisms for
triggering its onset.

5.2. Coupling of normal and shear stress

In this section we discuss a number of observations
that demonstrate a strong coupling between shear and
normal stresses. DST systems can exhibit remarkably
large fluctuations. For example, in steady-state rheometer
measurements under constant applied shear rate, time series of
the shear stress can fluctuate more than an order of magnitude
in the shear thickening regime (Lootens et al 2003). These
fluctuations in the shear stress are strongly correlated to the
normal stress, with a direct proportionality between shear and
normal stress (proportionality factor of order 1) (Lootens et al
2005). A plot of τ versus normal stress τN for such fluctuations
is shown in figure 5(a). These fluctuations in shear stress
are largely positive on top of a baseline, Newtonian τ(γ̇ )

(Lootens et al 2003). This is demonstrated in figure 5(b).
It compares τ(γ̇ ) as obtained from an average over an entire
time series, which exhibits shear thickening, with the mode
stress value at the baseline, which scales as a Newtonian fluid.
These observations suggest that without the fluctuations, these
suspensions are Newtonian and the baseline stresses are mainly
viscous in nature. DST, then, is a result of fluctuations which
are coupled to the normal stress.

The coupling between shear and normal stresses is so
strong that it supersedes an intrinsic τ(γ̇ ) relation and survives
with different boundary conditions. As an example, the shear
stress τ and normal stress τN are shown for a DST suspension
in figure 5(c) as a function of shear rate γ̇ for a typical
rheometer measurement in which the gap size has been fixed.
Positive normal stresses are generally found, corresponding to
the sample pushing against the plates, again strongly coupled to
shear stresses (Brown and Jaeger 2012, Fall et al 2008, Jomha
and Reynolds 1993, Lootens et al 2005). This is compared
with an experiment in a similar suspension in which the normal
force has been fixed and the gap size can vary as required.
While there is still a strong coupling of the shear stress to the
normal stress, now the rheological behavior is that of a yield
stress fluid with no shear thickening regime (Brown and Jaeger
2012). Such dramatic difference in behavior with change in
boundary conditions suggests that DST is not an intrinsic bulk
property of the fluid. A variety of different experiments have
similarly shown a strong coupling between shear and normal
stresses and a violation of the assumption of a direct intrinsic
relation between shear stress and shear rate (Brown and Jaeger
2012, Fall et al 2008, Lootens et al 2005).

This coupling between τ and τN implies a redirection of
stress by particle interactions within the bulk of the suspension
(Brady and Vicic 1995, Deboeuf et al 2009, Jaeger et al
1996, Nott and Brady 1994, Prasad and Kytömaa 1995, Sierou
and Brady 2002). Since there is not an intrinsic relationship
between stress and shear rate, and the coupling between
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Figure 5. Coupling of the normal and shear stresses in DST. (a) Linear proportionality between shear stress τ and normal stress τN in the
giant fluctuations of a shear thickening fluid measured at constant shear rate. Panel reproduced with permission from Lootens et al (2005).
Copyright 2005 American Physical Society. (b) Viscosity curve for a shear thickening fluid, based on the average shear stress (solid circles)
and the most probable shear stress (open circles) corresponding to a baseline stress value without giant fluctuations. The baseline has a
Newtonian scaling, suggesting the shear thickening is due to the giant fluctuations, which are strongly correlated to the normal stress. Panel
reproduced with permission from Lootens et al (2003). Copyright 2003 American Physical Society. (c) Comparison of flow curves
measured with different boundary conditions. Solid circles: shear stress τ from a fixed-gap measurement with a standard parallel plate
setup. Open triangles: normal stress τN from the same measurement. The absolute uncertainty on the normal stress is 2 Pa, so the normal
stress cannot be resolved at the low end. Open circles: τ for fixed normal stress of 2040 Pa (solid line) in a modified parallel plate setup with
a hard wall. In both experiments, the shear and normal stresses are strongly coupled, but the relationship between stress and shear rate
changes dramatically with the boundary conditions: in one case a yield stress fluid results and in the other DST. Panel reproduced with
permission from Brown and Jaeger (2012). Copyright 2012 The American Institute of Physics.

stresses is observed even during transients and under different
boundary conditions, this supports the idea that the stresses do
not come from viscous lubrication but instead from solid–solid
friction in which forces are transmitted along chains of hard
particles via frictional contacts (Jaeger et al 1996).

5.3. Limits on lubrication

Since most early models for shear thickening were based on
hydrodynamics such that the effective viscosity is dominated
by the flow in the lubrication gap between particles (Brady and
Bossis 1985), it is instructive to highlight a relevant limitation
of lubrication models. By relating the lubrication drag force
between particles to the size of the gap between particles, one
can put a strict upper bound on the effective viscosities reached
due to viscous drag forces between particles.

From lubrication theory, the effective viscosity can be
estimated assuming laminar squeeze flow of liquid between
neighboring particles of diameter a in suspension spaced
apart by a characteristic inter-particle gap size h (Frankel and
Acrivos 1967). The effective viscosity is η = Cηl(a/h) where
ηl is the liquid viscosity and C a geometric constant of order
1. The above acts as a way to estimate the gap size required to
obtain a particular viscosity scale. If the gap becomes as small
as two molecular layers, the continuum fluid model breaks
down and the molecules interact mechanically as if they are
frictional solids (Van Alsten and Granick 1988). Therefore,
the maximum effective viscosity due to viscous lubrication is
bounded by setting h to two molecular layers. In real flows,
the inter-particle gaps are not uniform, so some particles would
undergo solid–solid contact friction earlier than this bound
would indicate.

As an example, typical cornstarch particles have an
average diameter of 14 µm, so the upper bound on the

lubrication contribution to the viscosity for a suspension of
cornstarch in water is 4×104 times the viscosity of water when
the lubrication gaps becomes two water molecules thick (using
C = 9/4 (Frankel and Acrivos 1967)). However, suspensions
of cornstarch in water have been measured to have effective
viscosities up to at least 107 times the viscosity of water in
the shear thickening regime (Brown and Jaeger 2009). This
is orders of magnitude greater than possible with lubrication
contributions to the viscosity. This also means that lubrication
forces cannot generally support the large stresses observed
during DST, because the gaps between particles would reach
two molecular layers and the particles would interact as if
they have solid–solid contacts before the highest stresses
are reached. Nevertheless, models based on hydrodynamic
interactions such as the hydrocluster model can still be valid
in the parameter range relevant to the onset of DST or during
continuous shear thickening, where the effective viscosity is
still low enough that lubrication forces may dominate.

When lubrication breaks down at high stresses, the
frictional coupling between shear and normal stresses is
provided by disordered, dynamically reconfiguring structures
(force chains) that extend all the way to the boundaries. These
structures may arise as a result of hydroclusters growing in size
to span the system (Wagner and Brady 2009). While the growth
and evolution of this frictional contact network has not yet
been established via direct experimental observation in dense
suspensions, there are many observations of the consequences,
in particular the dilation of the particle packing along with
DST (Brown and Jaeger 2012, Fall et al 2008, Freundlich
and Roder 1938, Metzner and Whitlock 1958, O’Brien and
Mackay 2000).

Several recent simulations have confirmed the need for
frictional forces in DST (Fernandez et al 2013, Heussinger
2013, Seto et al 2013). Traditionally, attempts to simulate
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Figure 6. During shear, dilation causes particles to poke through the
surface as the interstitial liquid retreats into the center, giving the
surface a rough appearance. Here, exemplified by side views of a
suspension of 0.6 µm diameter PMMA spheres in stearic acid
between two metal plates (a) at rest and (b) during vertical
extension that stretches the fluid. At rest, the surface is shiny. Such
visible change in the surface portends an important change in the
boundary condition, where surface tension can produce strong
forces on particles and keep them jammed. Figure reproduced with
permission from Smith et al (2010). Copyright 2010 Nature.

DST have mostly been based on lubrication hydrodynamics,
and while they have produced continuous shear thickening,
they have failed to produced DST with only lubrication forces
(Brady and Bossis 1985, Wagner and Brady 2009). With
frictional forces between particles added to the hydrodynamic
models, DST with realistic-looking viscosity curves has now
been produced, along with the evolution from continuous
shear thickening to DST as the packing fraction is increased
(Fernandez et al 2013, Heussinger 2013, Seto et al 2013). The
need for frictional forces is confirmed by showing that reducing
the friction coefficient back to zero causes DST to disappear
(Fernandez et al 2013). Additionally, these simulations can
demonstrate the existence of contact networks evolving with
shear rate in the DST regime (Seto et al 2013).

5.4. Maximum stress scaling with the boundary stiffness

Another realization over the last decade has been that dilatancy
leads to an important role of capillary forces at boundaries
(Brown and Jaeger 2012, Cates et al 2005a, Holmes et al
2003, 2005). A number of experiments have shown that when
densely packed suspensions of particles are subjected to any
type of shear, the concomitant dilation requires an increase in
available volume in the bulk and results in the interstitial liquid
retreating to the interior so that the particles appear to poke out
of the surface (Brown and Jaeger 2012, Cates et al 2005b, Koos
and Willenbacher 2011, Miskin and Jaeger 2012, Smith et al
2010). If the particles are between about 1–100 µm in size,
the surface appears by eye to change from shiny to rough as a
result of this dilation, as the partially exposed particles scatter
light diffusely. An example of this surface change can be seen
in figure 6 for a suspension under tensile stress.

Dilation introduces additional stresses on the suspension
due to interaction with the boundaries which confine the
suspension (Onoda and Liniger 1990, Reynolds 1885). In a
typical suspension that is open to the air, the liquid–air surface
tension at the boundary provides a force that pushes penetrating

particles toward the interior. This is the force that holds the
suspension together so particles do not fall out of the liquid.
For the particles to penetrate the surface in a steady state, as
observed during DST, these forces must be transmitted through
the interior along force chains. The frictional contacts and
redirection of forces along these chains requires the strong
coupling between shear and normal stresses to obtain a net
force balance in the steady state. Thus, dilation is a mechanism
by which normal and shear stresses become coupled in a
frictional relationship, and the suspension rheology becomes
dependent on the boundary conditions.

The knowledge that dilation couples the shear and normal
stresses to the boundary allows a prediction of how strong shear
thickening can become, i.e. a prediction of the scale of τmax.
In a typical suspension open to the air, for example around the
perimeter of a rheometer tool, the liquid–air surface tension
γ at that boundary provides a force that pushes penetrating
particles toward the interior with a stress that is on the order
of γ /r , where r is the radius of curvature of the liquid–air
interface. Without deformation of the interface by particles,
r would be determined by the tool and container geometry or
the capillary length. But in a dense suspension that dilates
under shear, the scale of r decreases as particles deform
the interface until it is limited geometrically by the scale of
the particle diameter a. Thus, the confining stress at the
suspension–air interface is on the order γ /a, much larger
than in a Newtonian liquid (Brown et al 2011, Brown and
Jaeger 2012, Holmes et al 2003, 2005, Loimer et al 2002,
Melrose and Ball 2004b). This implies that normal and shear
stresses are limited by the confining stress scale γ /a from the
boundary. In rheological measurements this limiting strength
corresponds to the upper end of the shear thickening regime
τmax. Beyond τmax, any additional shear stress must come from
other sources, which are likely weak compared to the confining
stress if shear thickening is observed, so the viscosity decreases
beyond τmax.

Measured values of τmax are plotted versus the confining
stress γ /a in figure 7. Each point corresponds to a different
DST suspension, with a wide range of different particle
materials, shapes and sizes, and different liquids. It is seen
that for this wide variety of suspensions, covering four decades,
τmax falls in a band with a scaling proportional to γ /a. While
most measurements are done in shear flows, slightly larger
values of τmax are obtained for extensional flows (Bischoff
White et al 2010, Smith et al 2010). In many measurements
of colloids, the upper end on the shear thickening regime was
not reached. This is especially a problem in the colloid regime
because the expected scale of τmax for small particles exceeds
the measuring range of many rheometers. A lower bound on
τmax based on the limited measuring range is illustrated as the
dotted line in figure 7, using data from Maranzano and Wagner
(2001a) as an example.

Within the band shown in figure 7 there is variation by
about an order of magnitude in the value of τmax. This is
likely due to a number of dimensionless factors of order 1
that contribute to the precise value of the confining stress
and the resulting shear stress. These include the effective
coefficient of friction (Janssen 1895, Sperl 2006), the contact
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Figure 7. Stress at the upper boundary of the shear thickening
regime, τmax, plotted against the confining stress scale from surface
tension γ /a for a variety of suspensions. Particle materials are listed
in the key. Solid symbols: (Brown and Jaeger 2012). Open
symbols: polyvinyl chloride [PVC, circles (Hoffman 1972)],
polystyrene-acrylonite [PSAN, down-pointing triangles (Hoffman
1972)], polystyrene [up-pointing triangles (Boersma et al 1991)],
glass [square (Boersma et al 1990)], silica [diamond (Bender and
Wagner 1996)], CaCO3 [diagonal crosses (Egres and Wagner
2005)], PMMA [crossed square (Kalman et al 2009)], BiOCl [cross
(Bertrand et al 2002)], latex [diagonally crossed square (Laun et al
1991)], gypsum [8-point star (Neuville et al 2012)]. The solid line
corresponds to a scaling τmax = 0.1γ /a. Dotted line: lower bound
on τmax for measurements in which τmax was not reached
(Maranzano and Wagner 2001a), which often occurs in colloid
measurements due to limitations of rheometers. Also shown are
results from experiments with solid walls at all boundaries, using
glass spheres suspended in water (partially filled squares) or without
interstitial liquid (partially filled circle). In these cases the confining
stress scale is replaced by k/a, where k is the effective stiffness per
unit particle cross-section of the wall. Figure based on Brown and
Jaeger (2012). Copyright 2012 The American Institute of Physics.

angle for wetting, as well as factors related to particle geometry.
Nonetheless, the scaling τmax ∼ γ /a is found to hold as an
approximate scaling for a wide range of suspensions.

Observations have also been made of DST in suspensions
contained by solid-wall boundaries, without any suspension–
air interface. Notably, the shear thickening is similar with and
without any interstitial liquid (Brown and Jaeger 2012). This
unambiguously demonstrates that DST can occur without any
lubrication forces between particles. Some data are included
in figure 7 for experiments with solid walls at all boundaries
(partially filled symbols). In this case the stress scale is k/a,
where k is the stiffness of the boundary over an area with
cross-section equal to that of a particle, analogous to a surface
tension. The fact that the scaling of τmax is similar to that
when the boundary stiffness is determined by surface tension
suggests that τmax is generally determined by a confining stress
at the boundary, irrespective of source.

When a suspension is confined by boundaries of differing
stiffness, it should be understood that the least stiff boundary
limits τmax. Since forces are easily redirected throughout the
suspension, every boundary must be able to support τmax in a
force balanced steady state. This is analogous to a system of
elastic materials in series, where the least stiff material controls
the overall system stiffness.
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Figure 8. Rheological state diagram for a hypothetical suspension
including all known scaling laws for shear thickening regime
boundaries. It is assumed the suspension has a liquid–air interface at
the boundary and the liquid wets the particles. Red solid line:
osmotic pressure at room temperature (Gopalakrishnan and Zukoski
2004, Maranzano and Wagner 2001b). Green solid line:
Electrostatic repulsion for a surface potential ζ = 70 mV (Hoffman
1982, Maranzano and Wagner 2001a). Black solid line:
gravitational scaling with a density mismatch 
ρ = 1 g mL−1

(Brown and Jaeger 2012). Blue dashed line: confining stress from
surface tension with γ = 20 mN m−1 (Brown and Jaeger 2012).
Since each boundary depends on different parameters, each can be
tuned independently; in many suspensions a shear thickening regime
may not occur if the scalings for the confining stresses fall below the
scalings for stresses that oppose particulate shear.

5.5. State diagram

The boundaries of the shear thickening regime, τmin and τmax,
reflect the dominant stress scales that oppose shear between
neighboring particles and that provide a confining stress in
response to dilation, respectively. In this section we develop
these ideas into a state diagram. To delineate a typical
parameter regime for DST in suspensions, we show how each
of the scalings mentioned earlier provide bounds for the shear
thickening regime in figure 8. Since no single suspension
material covers the entire parameter space, we give scalings
for a hypothetical suspension with some typical material
properties, but note that each of the boundaries can be tuned
independently depending on particle and liquid parameters.

As can be seen in figure 8, τmin for osmotic pressure
and electrostatic interactions tend to be dominant for smaller
particles in the colloid regime, while the stress scale for gravity
is dominant for larger particles in the suspension regime. These
scalings for τmin typically meet at a size of around 10 µm
depending on the values of zeta potential, density, and so on.
This suggests that suspensions of particles on this size scale
will tend to have the smallest values of τmin. The minimization
of τmin defines an optimal particle size for shear thickening,
where the largest (logarithmic) stress range for the shear
thickening regime will typically be found. Physically, this
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optimal size corresponds to the colloid-suspension transition,
which is effectively defined by the transition between the
dominance of Brownian motion and electrostatic repulsion in
the colloid regime to the dominance of gravity in the suspension
regime.

The maximum particle size at which shear thickening was
found is about 1 mm (Brown and Jaeger 2012). An upper
bound is expected when τmin ∼ 
ρga, which is set by gravity
and increases with particle size, meets with τmax ∼ γ /a,
which is set by surface tension and decreases with particle
size, as seen in figure 8. This balance corresponds to a particle
capillary length scale a ∼ √

γ /(
ρg) which differs from the
usual capillary length in two ways. First, this particle capillary
length depends on the density difference 
ρ rather than just
the liquid density. Second, this particle capillary length sets a
transition between scaling regimes based on particle size rather
than system size. This means surface tension effects can be
seen in suspensions on much larger scales than would usually
be expected based on the usual capillary length.

The particle capillary length should typically be around
1000 µm for most suspensions, in agreement with the
maximum size particle found to shear thicken (Brown and
Jaeger 2012). However, the maximum particle size could
in principle be much higher for carefully density matched
suspensions.

While we have described a mechanism for shear
thickening that is based on generic phenomena such as dilation,
not all suspensions and colloids are reported to shear thicken.
This can be explained partly by the relative importance of
different stress scales. If any other particle interaction scales
exceed the confining stress from surface tension, we would
expect shear thinning mechanisms to be dominant over shear
thickening (Brown et al 2010a). In terms of the state diagram, if
the lower bound of the shear thickening regime τmin exceeds the
upper bound τmax, then there is no shear thickening regime in
between. This situation is quite common for real suspensions
in the colloidal regime. We have also left some particle
interactions out of the state diagram because the corresponding
scaling laws for τmin are not as well established. These
interactions include hydrogen bonding (Raghavan et al 2000),
depletion (Gopalakrishnan and Zukoski 2004), or a particle–
liquid surface tension (Barnes 1989, Brown et al 2010a).
Thus, the rarity of observations of shear thickening in dense
suspensions and colloids can in part be explained by the fact
that many colloids fall into the regime where the stress scale
of particle interactions exceeds the confining stress scale so
they do not have any shear thickening regime. Another likely
reason for the apparent rarity of shear thickening is that it
occurs in a fairly small parameter space with a narrow range
in packing fraction, so many measurements of suspension
rheology simply do not cover this range.

It is provocative that cornstarch, arguably the most famous
shear thickening particle, is on the optimal size scale of around
10 µm. In terms of chemical and physical properties, it is
notable only in that it is extremely hygroscopic. This implies
minimal particle–liquid surface tension and consequent shear
thinning effects in water (Brown et al 2010a), which also
happens to have one of the highest surface tensions of common

liquids. Cornstarch remains an inert, hard particle (with
Young’s modulus around 10 GPa (Johnson et al 2013)), in
contrast to some other mass-produced powders such as flour,
which gels in water at room temperature. Thus we attribute
the strong shear thickening of cornstarch to its optimal particle
size and lack of the various interactions which produce shear
thinning effects that could hide shear thickening.

6. Relation to jamming and other soft matter
systems

6.1. Broader view of physics of concentrated many-particle
systems

Why DST is only found in the parameter regime of hard-
particle suspensions and colloids, and not in emulsions, foams,
or other dense suspensions of deformable particles (Nordstrom
et al 2010) was formally posed in Barnes’ 1989 review and has
remained a major question in the field. It has been especially
puzzling since models for shear thickening require only simple
generic interactions and microstructural changes that could in
principle occur in any type of complex fluid consisting of many
particles.

To address this question, it is instructive to first consider
various situations with hard particles. Dry grains in an open
container are not known to shear thicken. When they shear
they dilate, but the free surface does not to provide an interface
with a restoring force. There is confining stress from gravity,
but since it provides confinement even without shear it also
sets the scale of the yield stress (Fall et al 2009), and it does
not produce a shear thickening regime. It is only when when
a confining stress is provided by enclosing the system with
solid walls that shear thickening can be found for dry grains
(Brown and Jaeger 2012). This source of confining stress
is not shown in figure 8 because the scaling is not yet well
established. This observation also makes it clear that one of
the important differences between dry and wet grains is that
the surface tension of the liquid provides a confining stress.

Some measurements of sheared dense suspensions in
closed systems found inertial scaling rather than DST (Bagnold
1954). While that system was enclosed, a rubber sheet was
placed in between the suspension and the wall to allow dilation
of the suspension, and a liquid reservoir allowed liquid to
fill the gaps enlarged by dilation. Thus, it seems likely that
the rubber sheet was soft enough that its compression did not
provide a significant confining stress in excess of the inertial
contribution. This suggests a possible method for greatly
reducing the resistance in pipe flow of dense suspensions,
namely to use compliant walls.

On the other hand, a closed system with very hard walls
is expected to cause the grains to jam as there is no room for
dilation and the hard walls would be able to apply enough
stress to completely frustrate dilation. This effect has been
seen for hard disks just below the onset of jamming based on
uniform compression. The disks contacted each other via force
chains when sheared quasi-statically, i.e. the system jammed
rather than shear thickened (Zhang et al 2008). The yield stress
in this jammed state with hard walls scales with the particle
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modulus as the particles compress against each other, which
is the most compliant component of the system if the walls
are harder than the particles. This results in a different scaling
for the yield stress with packing fraction than in suspensions
with a liquid–air interface, since with hard walls the confining
stress increases as the system is further compressed to higher
packing fractions (O’Hern et al 2003), while for a suspension
with a free surface the confining stress is limited by the scale
γ /a regardless of further compression.

The above situations with hard particles highlight the
importance not only of dilation of the packing under shear, but
also that the dilation must be partially frustrated by a restoring
force from the boundary to produce DST. This understanding
allows us to address the case of complex fluids consisting
of soft particles. Foams and emulsions are prototypical
systems used for jamming experiments with soft particles.
Rheologically they are generally found to shear thin, even
in confined volumes. In jammed foams, for example, the
yield stress is observed to be on the scale of τy ≈ 0.05γ /a

(Gardiner et al 1998). This is the same relation we find for
τmax in response to dilation or for jammed suspensions due to
the deformation of the liquid–air interface. Since foam bubbles
are very soft, they will be the limiting factor that determines
the confining stress under almost any boundary conditions.
They are so easily deformable that they will typically shear
without the need for dilation even in very dense packings.
Since this stress is very low, it seems unlikely that it can exceed
attractive interactions considering they both come from surface
tension. As a result, DST should not be expected in foams.
Similarly, emulsions are very soft particles with stiffness set
by (interfacial) surface tension, and so the confining stress in
response to dilation is too small to expect DST.

There is an intermediate regime where the particles are
less stiff than the boundaries, but stiff enough that the confining
stress would still exceed sources of τmin. For example, DST has
been observed in simulations of dry granular packings of elastic
particles in periodic boundary conditions. In this case, there
is no hard boundary, so the confining stress comes from the
stiffness of particles as they deform when dilation is frustrated
(Otsuki and Hayakawa 2011).

These observations also help explain why the majority
of simulations of suspension rheology based on lubrication
theory have failed to produce DST, even though many have
produced milder, continuous shear thickening (Melrose and
Ball 2004a, Nazockdast and Morris 2012, Wagner and Brady
2009). Most simulations remain focused on lubrication forces
and the local microstructure. Lubrication forces alone are
not enough to produce DST, and some confining stress is
needed. The few simulations that have produced strong shear
thickening include elastic forces between particles (Otsuki
and Hayakawa 2011, Zheng et al 2014), so confining stresses
could result from particle deformation. In contrast, lubrication
theory based simulations tend not to account for particle
deformation and stiffness, which can become impractical
to model at high packing fractions simultaneously with
lubrication hydrodynamics. Thus, lubrication theory based
simulations typically have not been operating in the right
parameter regime to observe DST.

6.2. Critical point at the jamming transition

DST was one of the phenomena first motivating the notion
of jamming (Cates et al 1998) and DST has since often been
connected to jamming (Brown and Jaeger 2009, Fall et al 2008,
Head et al 2001, Maranzano and Wagner 2001a). Jamming
and DST are both associated with a transition from a flowable
to a solid-like state in a medium of randomly configured
particles. In both DST and jamming, forces are transmitted
all the way across the system along a fabric of local, solid–
solid particle contacts. The strength of DST systems is found
to be limited by a confining stress (τmax), similar to the yield
stress of a jammed system (O’Hern et al 2003), and so the
scale of τmax and the yield stress above φc are usually the
same (Brown et al 2011). In jammed systems, the confining
stress is traditionally determined by the particle stiffness rather
than surface tension as jamming is typically studied without
interstitial liquids and with periodic boundary conditions. In
contrast with DST, in the original formulation of the jamming
phase diagram, the jammed state is associated with a static, or
at least not continually deforming, particle configuration that
has not yet fully yielded to shear (Liu and Nagel 1998, 2010,
O’Hern et al 2003, Corwin et al 2005). There are more recent
variations on this diagram in which the shear history can induce
additional jammed configurations, but with an anisotropic
fabric of stress-bearing contacts, at packing fractions slightly
lower than the ordinary jamming phase transition (Bi et al
2011, Majmudar and Behringer 2005). Similarly, DST occurs
at packing fractions just below jamming, but emerges at
finite shear rates, typically well beyond yielding, making it a
dynamically driven state. While it may be useful to keep these
differences in mind when dealing with specific circumstances,
we nevertheless propose here that the structural similarities
warrant labeling the DST state a dynamically jammed state.

We can relate DST to the jamming transition more
quantitatively based on the divergent scaling of the viscosity
curve. In the shear thickening regime τ(γ̇ ) can be fit by a
power law τ ∝ γ̇ 1/ε to obtain the inverse logarithmic slope
ε (Brown and Jaeger 2009). Using this construction, ε = 1
corresponds to a Newtonian scaling, and smaller values of ε

correspond to shear thickening. Figure 9 shows the behavior
of ε for several non-Brownian suspensions. This is plotted
versus a normalized packing fraction φ/φc, where φc is the
packing fraction obtained independently as the onset of a yield
stress due to jamming. This plot includes different particle
shapes, each with different φc. As φ approaches φc from below,
ε approaches zero. This implies that the viscosity curves
approach the limit of a discontinuous increase in τ(γ̇ ) as φ

reaches the jamming transition. Thus, the term ‘discontinuous’
is only strictly descriptive in the limit of φ → φc. Most of the
values of ε versus φ/φc in figure 9 collapse for φ/φc � 0.8
(the gray shaded band), suggesting a universal scaling in this
regime. To the extent that this analogy holds, this would be
similar to a second order phase transition in which proximity
to the critical point controls the strength of shear thickening,
where the value of the critical point is the same as the jamming
transition.

The one particle type clearly behaving differently is S-
shaped hooks. This suggests that while all of the convex
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Figure 9. The strength of shear thickening is characterized by the
exponent of a fit of τ ∝ γ̇ 1/ε to the shear thickening regime. The
inverse of the exponent ε is plotted versus φ/φc, the packing fraction
normalized by its value at the jamming transition. Data from several
different suspensions including different particle shapes with very
different values of φc. Black solid squares: rods with aspect ratio
� = 12, φc = 0.35. Red diamonds: rods with aspect ratio � = 6,
φc = 0.37. Green open squares: rods with � = 1, φc = 0.55. Blue
crossed squares: hooked rods, φc = 0.34. Black open circles: glass
spheres in water, φc = 0.58 (Brown and Jaeger 2009). Purple
down-pointing triangles: cornstarch in glycerol, φc = 0.57 (Brown
and Jaeger 2012). Orange up-pointing triangles: cornstarch in water,
φc = 0.48 (Brown and Jaeger 2012). The solid line is a best fit of
ε ∝ (φc − φ)ξ to the data for convex shapes and φ/φc > 0.8. The
collapse of the data in the gray band suggests that the normalized
packing fraction φ/φc determines the strength of shear thickening
for convex particle shapes. Figure reproduced with permission from
Brown et al (2011). Copyright 2011 American Physical Society.

particle shapes collapse onto the same universal scaling, more
extreme non-convex particle shapes may introduce additional
effects, which are not yet understood.

The jamming transition is functionally defined to occur
when, with increasing packing fraction or decreasing applied
shear stress, a yield stress is first observed (Liu and Nagel
1998). The minimum packing fraction where a yield
stress is observed depends on a number of suspension
properties, including shape, polydispersity, friction coefficient,
roughness, density matching, temperature, and attractive
forces (Jerkins et al 2008, O’Hern et al 2003, Onoda and
Liniger 1990, Pusey and van Megan 1986, Trappe et al
2001). For frictionless hard spheres in the limit of vanishing
shear, jamming occurs at a density corresponding to random
close packing, but particles that are frictional can exhibit
a yield stress and jam at packing fractions below random
close packing. The growth of the yield stress as the packing
fraction increases can range from a power law for frictionless
or Brownian particles (Kramb and Zokoski 2011, O’Hern et al
2003), to a sharp jump for frictional particles in suspension
(Brown et al 2011); each such case then may have a different
corresponding phase diagram. Generally speaking, DST
disappears when the yield stress becomes large enough to
overcome the stress scale τmax. While this transition occurs
near random loose packing for non-Brownian suspensions
(Brown and Jaeger 2009, Brown et al 2011), it can occur closer
to random close packing for Brownian suspensions (Kramb and
Zokoski 2011).

7. Microstructure and intrinsic rheology

7.1. Microstructure

Some of the main approaches to understanding DST are based
on the standard paradigm in rheology, which is to relate
microstructural changes to intrinsic bulk viscosities. Dilute
complex fluids can be treated as a perturbation on Newtonian
fluids, and early work successfully attributed shear thinning
(Choi and Krieger 1986) and continuous shear thickening
(Brady and Bossis 1985) to changes in the local microstructural
arrangements of particles in terms of a structure function. In
both of these cases, the rearrangement of particles due to a
change in shear rate leads to slight changes in viscous drag
forces between neighboring particles. However, the resulting
changes in effective viscosity are less than a factor of two.
This is because the fundamental interactions between particles
that are responsible for the measured forces do not change, and
only the values of the forces change slightly due to the changing
distribution of neighboring particle distances and orientations.

A variety of observations suggest such microstructural
changes do not directly produce the dramatic changes in stress,
for both strong shear thinning and shear thickening systems.
For example, microstructural changes at the onset of DST
are not consistent. Different microstructural changes can
be observed depending on which forces are dominant for a
particular suspension; sometimes this is an order–disorder
transition (Hoffman 1972), but this transition does not always
occur (Maranzano and Wagner 2002). Second, different stress
responses can be found for similar microstructures. For
example, random particle arrangements can be found for both
strong shear thinning due to entropic forces (Cheng et al 2011,
Xu et al 2012) or weaker (continuous) shear thinning due to
changes in viscous forces as particle structures rearrange (Choi
and Krieger 1986). Therefore, large changes in the viscosity
do not correspond 1-to-1 to changes in microstructure.

These observations may be leading to a paradigm change
in the interpretation of DST and other types of rheology
involving large changes in viscosity: previously thought of as
the cause of changes in dominant stress scales, microstructural
rearrangements now appear to be much more of a by-product.
This seems to apply both to DST (Brown and Jaeger 2011) and
also to strongly shear thinning behavior (Cheng et al 2011,
Xu et al 2012).

7.2. Constitutive relation

Taking the aforementioned considerations into account, a
simple approximate constitutive equation for the rheology DST
fluids can be written as (Brown and Jaeger 2012)

τ = ην(φ)γ̇ + µτconf(δ) + τmin. (1)

Here τmin represents the combined effect of forces that result
in shear thinning at low shear rates, such as direct attractive
or repulsive forces between particles, osmotic pressure, or
gravity. There is a confining stress τconf(δ) where δ is a
measure of dilation, and µ an effective friction coefficient.
For simplicity, we assume in equation (1) that the flow speed
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is low so there are no inertial stresses, but it is straightforward
to add that contribution (Brown and Jaeger 2012).

Despite its simplicity, this constitutive relation still
captures the basic rheology of DST fluids and the state diagram
illustrated in figure 8. It relates strong variations in the
effective viscosity to changes in the dominant stresses between
particles. At low shear rates, below the DST regime, τmin

or the hydrodynamic term dominate, depending on whether
shear thinning (Maranzano and Wagner 2001a, Melrose and
Ball 2004a) or Newtonian behavior (Frith et al 1996) is found
before shear thickening. If at higher shear rates the confining
stress term does not significantly exceed τmin, then the sum of
these terms will result in net shear thinning behavior (Brown
et al 2010a), capturing this important condition for DST as
illustrated in figure 8. This constitutive relation also captures
the coupling of the shear stress and the normal stress once the
confining stress term dominates all others on the right hand
side. When the dilation is against a linear elastic boundary with
a per-particle stiffness k (figure 7), then τconf(δ) = δk/a2, with
typical dilation values of δ/a ≈ 0.1, reproducing the scaling
shown in figure 7 (Brown and Jaeger 2012).

While the frictional aspect of the constitutive relation
might be considered an intrinsic relation in the DST regime and
is explicit in equation (1), the dependence of dilation on shear
rate is not explicit because the stress versus shear rate relation
of DST fluids can change depending on boundary conditions,
as shown in section 5.2. In the DST regime, δ typically
becomes non-zero and is able to change rapidly with the shear
rate in response to solid–solid frictional contacts and dilation
which can be characterized simply by a global volumetric
change (Brown and Jaeger 2012), rather than being sensitive to
a local structure function or other details of the microstructure
or an intrinsic function of the shear rate. While more general
constitutive relations such as the Pouliquen rheology (Boyer
et al 2011) have been developed for constant normal force
boundary conditions, such relations have not yet been applied
to model DST systems.

7.3. Intrinsic rheology versus the significance of boundary
conditions

It is interesting to note that the direct shear-rate dependence
of the constitutive equation in equation (1) is inherently shear
thinning. Local shear profile measurements confirmed that
such local relationship can indeed be shear thinning for DST
suspensions (Brown and Jaeger 2012). The explanation for
this apparent contradiction is that most of the shear stress is
due to solid–solid frictional contacts (see section 5.2) and thus
comes through the non-local confining stress term which is a
response to the global dilation δ (see section 5.4). One of the
surprising consequences of this is that characterizing rheology
solely via local, shear-rate dependent constitutive laws or local
viscosities in the bulk would miss the dramatic features of DST.

From a hydrodynamic point of view, the large significance
of the boundary conditions (i.e. normal stress and stiffness
of the boundary) and difference between local and global
results is unusual. In this traditional context it is more
typical for the stresses to be dominated by bulk viscous or

other interparticle stresses, while boundary conditions play a
smaller role, requiring only perturbative corrections to translate
between the local and global rheology.

A defining feature of intrinsic behavior is that stresses,
strains, and shear rates can describe bulk material properties
independent of system size. Typically, boundary conditions
only contribute significant effects near the boundaries of
continuum systems, so their contributions tend to decrease in
relative importance when the system size gets larger. On the
other hand, in DST, the boundary transmits forces along solid
contacts between neighboring particles in the system. If the
system as a whole is jammed (even if individual force chains
exist transiently), these forces transmit all the way to opposite
boundaries. The magnitude of forces and density of particles
do not decrease as they move further into the system, so the
scale of the corresponding stress remains independent of the
system size as for an intrinsic source of stress, even though
the source of the stress comes from the boundary (Brown et al
2010b). Thus stress, strain, and shear rate remain meaningful
ways of characterizing forces, displacements, and velocities in
a system-size-independent way for DST systems, as with any
other bulk material.

8. Dynamic phenomena associated with shear
thickening

The majority of work on shear thickening has been focused
on the behavior of τ(γ̇ ) under steady-state flow conditions
at constant rate of shear or extension. Low-frequency
oscillatory shear experiments in dense colloids have provided
complimentary insights, generally in line with the observations
from unidirectional shear. In these experiments it was found
that the strain amplitude γmin associated with the onset of shear
thickening scales inversely with the oscillation frequency ω

(Chang et al 2011, Laun et al 1991, Lee and Wagner 2003,
Mewis and Biebaut 2001), implying a characteristic rate of
shear γminω at onset. This corresponds to a peak stress γminω/η

whose value was seen to match the onset stress τmin from
unidirectional shear (at higher frequencies, wall slip needs to
be accounted for (see Lee and Wagner 2003). Alternatively,
in plotting the magnitude of the complex modulus G∗ versus
peak stress, the onset of shear thickening was observed at
a (frequency independent) stress level equal to τmin (Mewis
and Biebaut 2001). However, dense suspension also exhibit
a range of remarkable dynamic phenomena that emerge when
the system is in a non-steady, transient state. Without trying to
be exhaustive, we here introduce some of these behaviors and
discuss their relation to shear thickening.

8.1. Stable fingers and holes in vibrated layers

When vertically vibrated, a layer of Newtonian fluid can
undergo instabilities that deform its free surface. However,
gravity and surface tension provide restoring forces that tend
to drive transient perturbations of the fluid surface back to
a flat state that minimizes the surface energy. Localized
deformations of the surface that persist over many vibration
cycles are therefore suppressed. Shear-thickening suspensions
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Figure 10. (a) Persistent holes and (b) dynamic fingers and holes in
a vibrated layer of cornstarch in water. Figure reproduced with
permission from Merkt et al (2004). Copyright 2004 American
Physical Society.

can exhibit behavior that violates this rule. Thin layers of
dense suspension, flat and liquid-like at rest, under sufficiently
strong vibration develop protrusions that grow finger-like into
the third dimension. As shown by Merkt et al (2004) these
fingers and holes are among a whole family of instabilities,
including also open holes that are stable under vibration but
close when the driving is turned off (figure 10). More recently,
it was found that for certain kinds of suspension the holes could
expand, split and replicate, similar to self-replicating spots in
chemical diffusion–reaction systems (Ebata and Sano 2011,
Xu et al 2011).

Merkt et al (2004) originally attributed the holes’ stability
to shear thickening, but Deegan (2010) later showed that the
persistence is a consequence of stress hysteresis commonly
observed in dense suspensions. Such hysteresis is also a
key aspect of equation of state models for shear thickening
(Head et al 2001); however, for structures such as holes and
fingers, shear thickening per se may not be a requirement.
Indeed, recent experiments observed the very same localized
structures also in vibrated emulsions that are shear thinning
(Falcon et al 2012). Simulations have also produced dynamic
holes and fingers using a non-Newtonian fluid model that does
not have a shear thickening viscosity curve, and consistent
with the conclusion of Deegan (2010), the fingers and holes
only form when hysteresis is explicitly included in the model
(Ozgen et al 2014). These results all lead to the same
conclusion: persistent, dynamic holes and fingers are due to
stress hysteresis rather than shear thickening.

8.2. Impact resistance and solid-like behavior

One of the best known features of shear thickening fluids is
their remarkable impact resistance. As figure 1 shows, a dense
suspension can easily support the weight of a grown person
running across it. To prevent an adult from sinking in, a
simple estimate shows that the suspension must support on
average normal stresses in excess of about 40 kPa. Such stress
levels are an order of magnitude larger than the upper limit
τmax for shear thickening in cornstarch and water. They are
also significantly larger than most other reported τmax values
(figure 7).

This situation creates a problem for explaining the
observed impact resistance with any of the models discussed

Figure 11. (a) Sketch of the solidification below a rod impacting the
surface of a suspension of cornstarch and water. The red area
represents the solidified region, while the surrounding orange color
represents the effective shape of the added mass. The yellow
represents the remaining liquid-like suspension. (b) Cross-section of
displacement field 
z calculated from x-ray images of tracers inside
the suspension, taken 60 ms after impact. The color scale
corresponds to the size of vertical displacements. The large
red/yellow region outlines the material that is forced downward by
the rod. Figure based on Waitukaitis and Jaeger (2012). Copyright
2012 Nature.

so far. Lubrication forces are unable to generate these high
stress levels by themselves. However, there are many recorded
instances where people have been able to run across the surface
of whole pools filled with a dense suspension (these are easily
searchable on YouTube).

Recent experiments have shown that the impact behavior
is linked not so much to the steady-state shear response
but rather is a transient response (Waitukaitis and Jaeger
2012). Rapid normal impact onto the free surface of a dense
suspension generates a compression of the particle sub-phase,
which initiates a propagating density front that transforms
the fluid into a temporarily jammed solid. Even before the
front reaches the bottom, or in deep systems, very large
normal stresses are created simply by the fact that the jammed
region is rapidly growing. This growth was found to be
proportional to the distance the impacting object pushes the
suspension surface downward, producing an effect similar
to the rapid growth of compacted mass in front of a shovel
that is pushed into snow (Waitukaitis et al 2013). The
front propagates downward as well as radially outward (in
dense cornstarch/water suspensions about 10 times the pushing
distance (Waitukaitis and Jaeger 2012)) and the solid region
generated in the process not only increases the inertia, but also
the effective drag. As a result, dense cornstarch and water
suspensions have been observed to support normal stresses up
to 1 MPa regime even before the jammed region reaches a wall
(Waitukaitis and Jaeger 2012).

When this front can reach the bottom boundary and
establish a direct connection, the jammed region can then
transmit additional stresses back to the impacting object. In
relatively shallow layers of suspension, this connection is so
solid-like that a bowling ball hitting the surface can bounce
back. The presence of such recoil also indicates that there is
at least some elastic energy contributed from compression of
the particles in the suspension.

Figure 11 shows a sketch of the growing, solidified region,
consisting of a central jammed plug surrounded by added mass
that is dragged along. Direct imaging of the evolving front
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has so far not been achieved in a three-dimensional system,
although the resulting net displacement can be reconstructed
from tracking tracer particles by x-rays (figure 11(b)). Earlier
experiments by Liu et al (2010) had already provided indirect
evidence for jammed, well-delineated plugs underneath large
spheres that were pushed downward inside a dense suspension
with a linear actuator. In particular, they demonstrated
the remarkably focused nature of the stress transmission by
observing the indentations generated by the plugs on a tank
bottom made from soft molding clay. When using an elastomer
(PDMS) instead of clay, similarly focused indentations were
found, clearly establishing the jammed material in front of the
sphere was truly solid-like; but the elastomer was also seen to
relax back after a short time, indicating the transient nature of
this jammed solid.

The consequences of dynamic jamming can already be
observed when an object simply sinks into a dense suspension
(von Kann et al 2011, 2013). In particular when the object
approaches the bottom boundary, the slow down due to the
growing solid-like region in front of the object can lead to a
complete stop, so that the jammed solid has time to dissolve and
‘melt’. The result are stop-go oscillations. The characteristic
time scale for the locally hardened, jammed material to soften,
seen in these settling oscillation, is of the same order of
magnitude, around 25–100 ms, as observed in the impact
experiments (Liu et al 2010, Waitukaitis and Jaeger 2012)
and depends on a combination of suspension parameters such
as packing fraction and viscosity of the suspending fluid (the
Twente group models this by Darcy flow through a porous
medium (von Kann et al 2011)). This scale also may set the
time delay after which a person’s foot will start to sink into
the suspension (figure 1). On the other hand, the initiation of
the jamming front and the associated normal stress response
to impact appear to be comparatively insensitive to changes
in parameters such as the solvent viscosity (Waitukaitis and
Jaeger 2012).

The limit of very fast impacts, with strain loading rates
up to around 100 000 s−1, can be probed by using a set-up in
which the sample is sandwiched between two metal cylinders
instrumented with strain gauges (split Hopkinson bar), one of
which is then struck by a gas-driven high-velocity anvil (striker
bar) (Lim et al 2010b). Brownian motion is unlikely to play
much of a role at these extreme loading rates. Thus, while the
results of split Hopkinson bar experiments have typically been
interpreted in terms of particle cluster formation, in the absence
of Brownian motion this is essentially a granular scenario and
likely involves jamming as a consequence of compression of
the particle sub-phase. Indeed, the observed stress levels of
up to tens of MPa (Jiang et al 2013, Lim et al 2010b) are
far beyond the range of lubrication forces. Note that stresses
reported from these experiments are measured after the initial
impulse from the anvil has been reflected several times back
and forth between the two surfaces confining the sample (i.e.
after the so-called ringing-up period). These stresses therefore
correspond to the situation after a jammed solid bridging
the full sample depth has already been established. As the
stress levels increase, a transition to a regime dominated by
the modulus of the particles is observed, followed by non-
reversible fracturing (Lim et al 2010a).

Figure 12. Time sequence of cracking of a suspension of cornstarch
and water impacted by a metal rod (viewed from above).
Immediately after impact, a region where particles penetrate the
surface appears around the impactor, followed by radial cracks
within this region after a few ms. After about 100 ms, the cracks
have already started to heal as the suspension becomes liquid-like
again. Scale bar: 1 cm. The apparent change in the rod length is a
visual artifact and due to tilting once the suspension starts to ‘melt’
after impact. Figure reproduced with permission from Roché et al
(2013). Copyright 2013 American Physical Society.

Even higher, ballistic impact speeds in excess of
1000 m s−1 can be achieved with explosively launched flyer
plates (Petel and Higgins 2010, Petel et al 2013). From
experiments of this type, using SiC particles, transient shear
stress levels of 0.5 GPa have been inferred. This clearly
indicates stress transmission via solid–solid contacts provided
by the granular network of force chains and is eventually
limited by the stiffness of the individual particles. For the
use of DST suspensions in protective vests or clothing the
implications are that improvements are more likely to come
from optimizing the frictional nature of the particle contacts,
than from tuning hydrodynamic interactions mediated by the
suspending fluid (Kalman et al 2009, Petel et al 2013).

Recently Roché et al (2013) investigated fracturing of
dense suspensions at lower impact speeds by direct video
imaging. In these experiments, performed with cornstarch and
water at relatively low-packing-fraction (∼40%), the vertical
impact of a cylindrical rod initially created the same rapidly
growing dynamic jamming front observed by Waitukaitis and
Jaeger (2012), seen at the suspension surface as a radially
spreading change from smooth and glossy to rough and matt.
This was followed by penetration of the rod into the suspension
and the appearance of cracks moving radially outward from the
impact site, similar to a mode-1 fracture (figure 12). Brittle
fracture and cracking have also been observed in shear and
extensional flow of shear thickening suspensions (White et al
2010, Smith et al 2010), see for example figure 6.

While it has long been claimed that dense cornstarch
suspensions have elastic properties, few clear quantitative
observations have been reported. In tensile measurements
long filaments have been observed that appear fluid-like but
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exhibit viscoelastic recoil with forces provided by surface
tension, not in response to dilation but by the retraction of the
interstitial liquid (Smith et al 2010). Waitukaitis and Jaeger
(2012) reported bouncing of objects impacting the surface of
a cornstarch suspension. Steady shear experiments with a
small oscillatory component on top of a constant shear stress
demonstrated the existence of an elastic modulus in the shear
thickening regime (Rubio-Hernández 2014). The scenario
emerging from all of these observations is that shear thickening
suspensions exhibit a number of solid-like properties, and hints
of elastic properties, although it remains to be determined what
determines their stiffness and strength.

9. Conclusions

There have been great strides in understanding Discontinuous
Shear Thickening in the past two decades since Barnes’ review.
We can now make several well-supported conclusions about
the mechanisms for DST:

1. The stress at the onset of shear thickening τmin can be
described well by very simple force balance models. τmin

is on the scale of the largest source of stress that opposes
shear of particles past each other—this largest stress
depends on which forces are dominant for given particle
size and other material properties of the suspensions.
This conclusion is independent of the particular structural
transition that occurs at the onset of shear thickening. In
different shear thickening suspensions, there is evidence
for the transition being hydroclustering (Cheng et al
2011), an order–disorder transition (Hoffman 1974), and
dilatancy (Brown and Jaeger 2012), but all of these
microstructural changes can be associated with the same
onset stress scalings.

2. Frustrated dilatancy against a stiff boundary is required
at least for the largest increases in stresses observed in
shear thickening suspensions. Lubrication forces are not
strong enough to provide the largest stresses observed in
suspensions of cornstarch in water among others, nor can
they explain the strong coupling between shear and normal
stresses and dependence on the boundary conditions.

3. The upper bound of the shear thickening regime, τmax,
is limited by the weakest confining stress in response
to dilation in the system and provides a convenient
signature of the source of confining stress for DST. In most
experiments, this is usually surface tension at the fluid–air
interface, which can be magnified by orders of magnitude
due to particles poking through the surface in response
to dilation (Brown and Jaeger 2012). In other cases,
the limiting confining stress may be particle stiffness, or
the stiffness of a solid wall at the boundary (Brown and
Jaeger 2012, Otsuki and Hayakawa 2011, Wagner and
Brady 2009).

4. One of the most puzzling questions that had been left open
from Barnes’ review was why don’t all dense suspensions
exhibit shear thickening, since the proposed mechanisms
should be generally applicable to all suspensions. The
solution is in the stress scales. If the weakest confining

stress in response to dilation (τmax) is weaker than or
comparable to the strongest stress opposing shear between
neighboring particles (τmin) , then there is no significant
potential increase in stress with increasing shear rate
to produce shear thickening. Some examples that do
not shear thicken are suspensions with strong attractions
between particles that behave as yield stress fluids. Other
examples include very soft particles as in emulsions or
foams, where particles can deform easily to shear past
each other without pressing hard against the boundaries.

5. The constitutive relation for τ(γ̇ ) is not intrinsic, bulk
behavior characterized by the local microstructure as is
the standard expectation for complex fluids. Instead, τ(γ̇ )

is determined by the boundary conditions in response to
the global structural change of dilation.

Recent years have also brought a re-evaluation of many
of the dynamical phenomena that have long been associated
with shear thickening. This has led to several surprises.
For example, the formation of persistent fingers and holes in
vibrated layers of shear thickening fluid is not due to a shear
thickening τ(γ̇ ) relation. In fact, these persistent structures
have now been observed also in non-shear-thickening fluids
(Falcon et al 2012), and are better explained as a consequence
of hysteresis in the rheology (Deegan 2010, Ozgen et al 2014).
Similarly, the strong impact resistance of shear thickening
fluids appears to originate not from a particular τ(γ̇ ), but rather
arises due to a transiently jammed solid region forming in front
of the impact (Waitukaitis and Jaeger 2012).

Open Questions and opportunities. The rich set of behaviors
discussed in this article exists in a region of parameter space
that is outside the regime traditionally investigated by either the
complex fluids or the granular materials communities. Dense
suspensions, as has become clear, cannot be thought of as
simple extensions of the dilute limit of a few particles in a
liquid. Conversely, adding interstitial liquid to a dry granular
material introduces qualitatively new effects, not the least of
which is the confining role of surface tension. In the parameter
region relevant to DST, which has been the focus of our review,
the suspension consists roughly 50/50 of particles and of liquid,
and a full treatment has to consider both. Given the difficulties
associated with this, it should therefore come as no surprise
that, despite all the advances, there remain many outstanding
problems and opportunities for further research.

In particular, while we can identify general scaling
arguments for the onset of shear thickening, there is not yet
agreement on a general model that explains the onset of DST
with direct supporting evidence. It remains to be seen if there
is a way to reconcile the different microstructural mechanisms
into a single general model, or if the field will remain in
support of several distinct models applicable to different types
of suspensions. While several recent simulations have now
produced the steep viscosity curves characteristic of DST, it
remains a challenge to explain quantitatively how this viscosity
evolves with packing fraction. This may require a constitutive
relation that connects dilation, normal stress, and shear rate in
DST systems.
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Shear thickening is a phenomenon which shares many
properties of jammed systems. We labeled this larger set
of behaviors ‘dynamic jamming’, mindful not only of the
connections to but also of differences with a more static
jammed state that has not yielded to shear. An extended
formalism for jamming that would apply to the variety
of dynamic systems and transient behaviors would be an
important contribution to the field. The fact that suspensions
can be prepared across a wide range of packing fractions
and the ability to tune the particle interactions offers further
possibilities for studying jamming.

In this regard, oscillatory shear might offer special
opportunities to separate out the different contributions from
viscous dissipation and solid–solid contacts. Especially in
highly concentrated, non-Brownian suspensions the onset of
jamming due to ‘frustrated dilation’ will generate situations
where friction can play a large role in addition to viscous and
elastic forces. Separating out these forces may require a new
interpretation of the non-linear response to oscillatory shear.

It has also not yet been demonstrated how the dynamic
impact response of shear thickening systems can be explained
in a detailed, quantitative manner that captures the particle
microstructure as well as all of the observed phenomena, such
as rolling and bouncing of objects and, of course, running on
the surface. A general explanation for the elastic- and solid-
like behaviors, and how they might depend on the details of
the particle properties and boundary conditions remains to be
worked out.

Finally, there is currently much interest in the rheology
of suspensions comprised of active particles (‘swimmers’) and
thinning as well as thickening behavior has been observed (Cui
2011, Gachelin et al 2013, Giomi et al 2010, Heidenreich et al
2011). It remains to be seen under which conditions DST can
occur in these systems.

All of these challenges and opportunities relate to
the fundamental science associated with the behavior of
dense suspensions. Beyond that, a better understanding
of shear thickening is critical also for enhancing flow and
preventing clogging during the industrial processing of dense
suspensions, and it has already begun to enable the design of
new applications, specifically materials for improved impact
dissipation.
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