
IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 72 (2009) 122501 (26pp) doi:10.1088/0034-4885/72/12/122501

Theory of radio frequency spectroscopy
experiments in ultracold Fermi gases and
their relation to photoemission in the
cuprates
Qijin Chen1,2, Yan He1, Chih-Chun Chien1 and K Levin1

1 James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
2 Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou,
Zhejiang 310027, People’s Republic of China

Received 3 March 2009
Published 22 October 2009
Online at stacks.iop.org/RoPP/72/122501

Abstract
In this paper we present an overview of radio frequency (RF) spectroscopy in the atomic Fermi
superfluids with the ultimate goal of suggesting new directions in the cold gas research agenda
from the condensed matter perspective. We review the experimental and theoretical literature
on cold gases and the photoemission spectroscopy of the cuprates particularly as it pertains to
areas of overlap. In addition to a comparison with the cuprates, this paper contains a
systematic overview of the theory of RF spectroscopy, both momentum integrated and
momentum resolved. It should be noted that the integrated and momentum resolved forms of
photoemission are equally important in the high Tc cuprate literature. For the cold gases we
introduce the reader to such topical issues as the effects of traps, population imbalance, final
state interactions and, over the entire range of temperatures, we compare theory and
experiment. We show that this broad range of phenomena can be accommodated within the
BCS-Leggett description of BCS–BEC crossover. Importantly, this scheme captures some of
the central observations in photoemission experiments in the cuprates.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

There is considerable excitement surrounding the discovery
[1–10] of superfluidity in the ultracold Fermi gases. What
is novel about these new superfluids is that using a Feshbach
resonance [11] one can tune the attractive interaction from
weak (as in the BCS limit) to strong as in the Bose Einstein
condensation (BEC) regime. We note that BCS theory is,
in many ways, the paradigm of condensed matter theories.
Thus, the fact that an entire body of work on conventional
superconductors has concentrated on a very special case of a
much more general phenomenon underlines the importance
of these cold Fermi gases [12, 13]; they provide a unique
opportunity for elucidating a very powerful generalization of
BCS theory. In addition, a number of people [14–18] have also
argued that this BCS–BEC crossover might be relevant to the
cuprate superconductors. In this way we see that the tunability
of the interaction strength in the Fermi gases can yield a
possible simulation of key aspects of the high temperature
superconductors.

In large part the rationale for application of BCS–BEC
crossover to the cuprates derives from their anomalously short
coherence length [19]. However, additional arguments [14]
in support of this scenario come from the fact that Tc is
anomalously high so that the attractive interaction driving the
superconducting pairing may be stronger than that associated
with strict BCS theory. In addition, the cuprates are quasi-two-
dimensional so that the onset of superconductivity is expected
to be relatively continuous; this leads to the notion that there
is some degree of pairing in the normal state as is consistent
with the crossover picture. In a related vein, perhaps most
interesting about the BCS–BEC crossover scenario for the
cuprates is that it leads naturally to ‘pseudogap’ effects, that
is a pairing gap which sets in smoothly at T ∗, above Tc. Of
all issues currently studied in the field of high temperature
superconductors, the question of the origin of the pseudogap
has attracted the most attention. Is this pseudogap related to
the superconductivity itself, as in the crossover approach, or
does it reflect a hidden additional order parameter?

Theories of the cuprates which are based on the notion that
the pseudogap has something to do with the superconductivity
comprise a rather large class of approaches [20–22], of which
the crossover scenario is only one. This latter scenario is
to be distinguished from the so-called ‘phase fluctuation’
scheme [20]. It is is argued that the low plasma frequency
associated with the underlying parent insulating state leads to
an exotic normal state in which there are correlated regions
of pairing amplitude without phase coherence. By contrast,
the BCS–BEC crossover approach builds on the stronger-than-
BCS attractive interaction associated with the short coherence

length. Here one has ‘pairing fluctuations’ or pre-formed
pairs in the normal state. Importantly, as one goes below Tc

these pairs persist as non-condensed pair excitations [23] of
the condensate. This leads to a gentler onset of superfluid
coherence, with progressively more pairs falling into the
condensed state as T is decreased below Tc. We will see that,
as a consequence, the crossover approach helps to reconcile
some otherwise paradoxical experiments which have been
interpreted to suggest a ‘two-gap’ picture [18] for a range of
photoemission and other phenomena. The two gaps here would
then correspond to the contribution from the non-condensed
and condensed pairs.

As compared with the pseudogap, rather less attention in
the cuprate field has been focused on the nature of the attractive
interaction which is responsible for high Tc superconductivity,
although it is generally believed that in one sense or another
this is to be associated with the underlying physics of the Mott
insulating parent compound. Indeed, the crossover scenario
begs the question of the pairing mechanism and simply
assumes that there is an attractive interaction of unknown but
arbitrary strength. Since, in this approach, the pseudogap
onset temperature is identified with the pairing onset, and
since T ∗ increases as the insulator is approached, it is quite
likely that ‘Mott physics’ in one form or another is, indeed,
responsible for the pairing. From a very different perspective,
it has also been argued that future cold gas experiments on
optical lattices [24] will provide a simulation of repulsive
Hubbard models, which might further elucidate the nature
of the pairing interaction and of ‘Mott physics’ aspects [22]
of high Tc superconductivity. This would be most relevant
if, indeed, the repulsive Hubbard model is the source of an
attraction in the d-wave channel.

While condensed matter physicists have a wealth
of well-developed techniques for characterizing electronic
superconductors, the tools currently available to the atomic
physicists who study the Fermi gases are more limited.
Moreover, in these gases, it is not at all straightforward to
determine something as commonplace as the temperature in
the gas, although some impressive progress [8, 25, 26] has been
made along these lines. This paper is devoted to addressing
one of the most powerful techniques currently being applied to
the Fermi gases: radio frequency (RF) spectroscopy. We will
show how this technique is similar to that of photoemission
in condensed matter physics and exploit the analogy, already
discussed in the literature [27], between momentum resolved
RF and angle resolved photoemission spectroscopy (ARPES).
As a background for both communities, we review some of the
experimental and theoretical literature on RF spectroscopy (of
cold gases) and photoemission spectroscopy (of the cuprates).
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We argue that there are a number of issues which have been
central to high temperature superconductivity which would be
useful to address more systematically in the ultracold Fermi
gases. Perhaps the most notable example of commonality
[14, 15] in this regard is the ubiquitous pseudogap phase.

We will see that photoemission experiments [28, 29]
in the cuprates and RF spectroscopy in the atomic Fermi
gases both depend on the important fermionic spectral
function A(k, ω) which characterizes completely the single
fermion or one-particle properties of a given many body
system. In simplistic terms, the driving force motivating
the photoemission studies in the cuprates is to acquire an
understanding of the ‘mechanisms’ and nature of high Tc

superconductivity. There has been a recent emphasis on high
temperatures near T ∗, where the pseudogap turns on and on the
region from slightly above to somewhat below the superfluid
transition temperature, Tc. By contrast in the ultracold gases,
the RF spectra have been studied in the hopes of characterizing
the pairing gap �—much like tunneling is used in conventional
superconductors. There has been a recent emphasis on very
low temperatures T � Tc and in particular on quantifying the
size of � at T = 0.

Some of the key issues that have emerged in photoemission
studies of the cuprates involve (i) a characterization of the
self-energy contained in the spectral function. Different
empirical models [30] have been deduced which, it is argued,
might ultimately hold the clue to the nature of the mediating
boson. (ii) Also important is the origin of the pseudogap
[14, 22] and whether this gap is a signature of a hidden order
parameter or whether it reflects the incipient pairing which
ultimately leads to the condensed phase at lower T . (iii) It is
viewed as extremely important to arrive at an understanding
of how superconducting coherence manifests itself in these
spectroscopic experiments as one goes from the normal to
the ordered phase. This is a complicated question, given
the presence of a normal state (pseudo)gap. Finally, other
issues of interest are the nature of the order parameter and
pseudogap symmetry (which have been shown to be consistent
with d-wave). Indeed, in the cuprates this d-wave symmetry
has led to a complexity not anticipated in the s-wave Fermi
gases associated with (iv) the contrastingT dependent behavior
of photoemission (and other properties) near the gap nodes as
compared with that near the gap maxima or anti-nodes.

In the cold gases an underlying goal has been to
test different theories of BCS–BEC crossover, particularly
establishing the most suitable ground state and its quantitative
implications such as the pair size [31]. The parameters which
quantify the nature of the scale-free or ‘unitary’ gas have also
been addressed. Of additional interest are studies on how
population imbalance [32–35] can co-exist with superfluidity.
Here new phases associated with, for example, the exotic [36]
Larkin–Ovchinnikov–Fulde-Ferrell (LOFF) form of pairing
have been contemplated. Even more topical is the behavior
in the limit of extreme imbalance [34, 35].

One can see that, despite the similarities in these two
spectroscopic techniques, the research agenda in the two
communities is rather different. In the high temperature
superconductors, the focus has been on the temperature regime

near Tc. Furthermore, quantitative issues are viewed as of
considerably less importance than arriving at a qualitative
understanding, which is still very incomplete. By contrast, in
the ultracold Fermi gases the focus has been on temperatures
associated with the ground state and on arriving at a more
complete quantitative characterization. This brings us to a
major goal of this paper, which is to suggest new directions
in the cold gas research agenda from the condensed matter
perspective. In particular, we wish to highlight differences
and similarities in the cold gases with the analogous cuprate
studies. A general theme, which takes a cue from the copper
oxide superconductors, is to focus on a characterization of
(i) the fermionic self-energy, (ii) the pseudogap phase and
(iii) how superfluid coherence is established and manifested
(in these spectroscopies) at and below Tc.

2. Motivation and background

2.1. Comparing and contrasting RF with photoemission

Photoemission and angle resolved photoemission spectro-
scopy (ARPES) have been remarkable tools for characterizing
cuprate superconductors [28, 29]. Here one invokes the
‘sudden’ approximation which corresponds to the assumption
that the electron acquires the photon energy instantaneously
and emerges from the crystal surface immediately. As
a consequence, photoemission is associated with electrons
near the crystal surface. In addition, only the momentum
component in parallel with the surface is conserved. It follows
that ARPES is ideal for layered materials. The energy levels
involved in the ARPES process are shown in the left panel of
figure 1. Here, and throughout the paper, we define the quantity
Ek corresponding to the dispersion of the paired fermions in
terms of the usual BCS expression

Ek ≡
√

(εk − µ)2 + �2(T ). (1)

Because of the large photon energy hν, compared with the
electron energy scale inside the crystal, the final state of the
photo-emitted electron is essentially free so that the energy
conservation constraint is given by Ei = Ef − hν, where
Ef = k2/2me is measured with an energy analyzer. Here
me denotes the electron mass. In turn, the momentum (in the
known direction) has magnitude k = √

2meEf . The ARPES
spectrum is given by [28]

I photo(k, ω) = M0(k, ν)A(k, ω)f (ω), (2)

where M0(k, ν) is a matrix element which depends on the
photon energy. Apart from the matrix element and the Fermi
function f (ω), one sees that ARPES measures the electronic
spectral function.

The energy levels involved in an RF transition are shown
in the right panel of figure 1. Here �L is the RF frequency for
exciting a free atom from hyperfine level 2 (labeled ‘free’) to
level 3 (labeled ‘final’). We neglect final state effects, which
will be discussed later. A significant difference between an
RF and ARPES transition is that in the RF case a dominantly
large fraction (�L) of the photon energy is converted to excite a
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Figure 1. Figure on left: energy levels in an ARPES transition. In a paired system there are two fermionic states which contribute to the
photoemitted current. These curves are labeled ‘particle’ and ‘hole’. The upper branch (‘particle’) will not be occupied until the temperature
is high. Here a tight binding dispersion ξk ≡ εk − µ is assumed for the underlying non-paired initial state (labeled ‘free’). The lower
horizontal dashed line indicates the Fermi level of the electrons and the solid line labeled ‘final’ the dispersion of outgoing electrons. Figure
on right: energy levels in an RF transition. �L is the RF frequency for exciting a free atom from hyperfine level 2 (labeled ‘free’) to level 3
(labeled ‘final’). �′

L is the same energy but measured relative to the respective chemical potentials. The curves labeled ‘particle’ and ‘hole’
are the dispersion of the particle and hole branch of a paired atom in level 2, with energy level given by ±Ek + µ, respectively. (Color online.)

fermion from one internal state to another. As a consequence,
the excited atoms do not have a substantially higher kinetic
energy so that they do not leave the bulk gas immediately after
the transition until they are deliberately released. The energy
zero for an RF transition is more conveniently chosen to be the
bottom of the free atom band of state 2. In this convention, the
final state energy is Ef = �L + εk, where εk = k2/2m, and
the initial state energy is Ei = ±Ek + µ for the two branches
shown in figure 1 (right panel) so that hν = Ef − Ei.

The RF current (which will be derived in section 3.3) is

IRF
0 (ν) =

∑
k

IRF
0 (k, ν)

=
∑

k

|Tk|2
2π

A(k, ω)f (ω)

∣∣∣∣
ω=ξk−ν

, (3)

where |Tk|2 is a tunneling matrix element and it should be noted
that there is the restriction ω = ξk−ν which (apart from matrix
element effects) serves to differentiate the photoemission and
RF responses.

Finally, the momentum resolved RF experiments to
which we frequently refer to effectively measure [27] the
‘occupied spectral intensity’, much like photoemission, which
corresponds to

A(k, ω)f (ω)k2/2π2, (4)

where the angular degrees of freedom have been integrated out.
In a related fashion, we draw attention to earlier suggestions
[37] that stimulated Raman spectroscopy in the cold gases can
be used as an alternative analog probe to photoemission studies
in the cuprates.

2.2. Overview of the literature on RF experiments

Experiments and theory have worked well hand in hand in
developing an understanding of the so-called ‘RF pairing
gap spectroscopy’ in the atomic Fermi gases. This class of
experiments was originally suggested by Torma and Zoller
and their colleagues [38, 39] as a method for establishing the
presence of superfluidity. In this context an equation equivalent
to equation (3) was derived. Later work [40, 41] made
the observation that these RF experiments, which reflect the
spectral function A(k, ω), would observe a pairing gap �(T )

which may be unrelated to superconducting order (except in
the strict BCS regime). This was the beginning of a recognition
that a pseudogap would be present, which is associated with
stronger-than-BCS attractive interactions. Moreover, this
pseudogap appears in the ‘fermionic regime’, that is when the
fermionic chemical potential is positive [14].

A groundbreaking experimental paper [42] reported
the first experimental implementation of this pairing gap
spectroscopy in 6Li over a range of fields corresponding to
the BCS, BEC and unitary regimes. Accompanying this paper
was a theoretical study [43] by Torma and co-workers based
on the BCS–BEC crossover approach introduced earlier [40],
but, importantly, generalized to include trap effects. This
theoretical scheme, which was initially developed to address
the highTc cuprates [44], and also applied in [41], is the one that
will be the focus of this paper. The calculations [43] showed
reasonable agreement with experiment, and subsequent work
[45] presented more quantitative comparisons of the spectra
along with theoretically inferred estimates of the temperature,
based on an adiabatic sweep thermometry [46]. Some of the
first evidence that one was, indeed, observing a pairing gap (or
pseudogap) in the normal phase was presented in [15], based on
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this same thermometric approach and the data of the Innsbruck
group [42].

In an important contribution, Yu and Baym pointed
out [47] that the theoretical framework described above and
summarized in equation (3) missed what have now become
known as ‘final state effects’. Moreover, this could be seen
most clearly in sum rule constraints on the RF spectra. These
final state effects can be understood as follows. Assume as
the right panel of figure 1 that the condensed phase involves
pairing among hyperfine channels 1 and 2 and that the excited
atomic state is associated with hyperfine level 3. While the
attractive interaction g12 drives the pairing, the excited atoms
in 3 will also experience a residual interaction g13, which may
modify the RF spectra. In this way, these final state effects yield
corrections to the lowest order current, shown in equation (3).
Interestingly, the sum rule, now known as the ‘clock shift’
sum rule [48], shows that the first moment of the current sums
to an internally consistent value, rather than a pre-determined
constant. This will be discussed in section 4.1.

A new set of groundbreaking experiments from MIT
have introduced a powerful way of exploiting and enhancing
RF spectroscopy. With the implementation of tomographic
techniques [49], the complication of studying the spectra in
a trapped configuration can now be removed, so that a scan
at different trap radii will yield an effectively homogeneous
spectrum. Also important was the demonstration [31] that the
entire collection of 6Li superfluids with hyperfine levels 1 and
2 paired, as well as 1 and 3 as well as 2 and 3, are stable and
can be probed in RF spectroscopy with variable RF transitions,
�L (defined in the right panel of figure 1). In this way one has,
in conjunction with a larger complex of superfluids, a way of
tuning final state effects. Moreover, it was hoped that a proper
choice of the superfluid and the RF transition can reduce the
importance of these final state corrections and allow one to
consider the simpler theory of equation (3).

The theoretical challenge of incorporating final state
contributions has become very topical, in large part because
of the existence of data in effectively ‘homogeneous’ systems
through these tomographic techniques. In the absence of
a trap one can more readily handle the higher order terms
introduced by Yu and Baym [47]. With these corrections to
equation (3) one may have a better opportunity to quantitatively
fit the RF spectra. Very nice calculations [50, 51] of I (ν)

in the homogeneous case consider the T ≈ 0 superfluid
and good agreement with experiment has been demonstrated
[50]. Subsequent work [52] has addressed the entire range
of temperatures where one can probe the RF contributions
associated with pre-existing thermally excited quasi-particles.
These are shown as a second branch of RF transitions in the
right panel of figure 1. The body of work [45, 53] at general
temperatures T makes the important point that the presence
or absence of superfluid order (as long as T < T ∗) will not
lead to fundamentally different physics. This observation is in
contrast to alternative calculations [50, 51, 54] which consider
separately the T ≈ 0 superfluid or the normal phase.

Along with these new developments has been an
experimental and theoretical focus on population imbalanced
gases [33, 55–59]. The observation [60] that extreme

imbalance may drive the system to an exotic normal phase
has captured the attention of the community. This exotic
phase appears to be associated [61, 62] with the binding of
a small number of reverse spins to the majority states and
this signature is consistent with RF experiments, as shown
theoretically [54, 63]. It should be stressed that this binding
is not the same as pairing, which is a macroscopic many body
phenomenon. But it may, nevertheless, smoothly evolve into
pairing as one varies the concentration of reverse spins [64],
and in this way diminishes the population imbalance.

With the growing appreciation for final state effects,
an interesting controversy has recently emerged concerning
slightly different data obtained on the 1-2 superfluid at
unitarity. This involves the original Innsbruck experiment [42]
and more recent data from the MIT group [31]. The latter series
of studies have led the authors to inquire whether the pairing
gap observations reported in [42] might instead be associated
with final state effects. We comment on this possibility in
section 6.3 of the paper, where we argue on behalf of the
original interpretation in [42].

Finally, recent experiments on 40K from the JILA group
[27] have now demonstrated that it is possible to measure
the spectral functions directly using momentum resolved RF
pairing gap spectroscopy over a range of magnetic fields
throughout the BCS–BEC crossover. These experiments are
able to resolve the kinetic energy εk , and thereby the three-
dimensional momentum distribution of the RF-excited (or
‘out-coupled’) state 3 atoms. Since the momentum of the
RF photon is effectively negligible, the momenta of the out-
coupled atoms can then be used to deduce that of the original
1-2 or paired states. There is a substantial advantage in
using 40K over the more widely studied 6Li since, for the
usual Feshbach resonance around 202 G, there are no nearby
competing resonances to introduce complications from final
state interactions [47, 50–52, 63]. This powerful tool, which
we have seen has a strong analogy with ARPES spectra,
opens the door for testing the fundamentals of the many body
theory which underly this BCS–BEC crossover. As we show
later in section 6.3, it may also help to remove ambiguity
plaguing the interpretation [31, 42] of momentum integrated
RF experiments by establishing a clear dispersion signature of
pairing.

2.3. Key features of ARPES data on cuprates

We outlined earlier three issues around which much of the
cuprate photoemission studies can be organized. These are
characterizations and modeling of the fermionic self-energy,
of the pseudogap phase and of the effects of coherence as
the superconductor passes from above to below Tc. Figure 2
is a plot showing the behavior of the excitation gap which
addresses the first of these three issues. Plotted here is the
pairing gap inferred from the leading edge in the photoemission
experiments as a function of temperature. The temperature T ∗

can be read off as the temperature where the gap first appears.
The three different curves correspond to three different doping
concentrations which one can interpret in the framework of
BCS–BEC crossover as corresponding to three different values
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Figure 2. Temperature dependence of the excitation gap from the
ARPES measurement for slightly overdoped (filled (black) circles,
Tc = 87 K), underdoped ((red) squares, Tc = 83 K) and highly
underdoped ((blue) inverted triangles, Tc = 10 K) single-crystal
BSCCO samples (taken from [65]). There exists a pseudogap phase
above Tc in the underdoped regime. (Color online.) Reprinted by
permission from Macmillan Publishers Ltd: Nature (382 51–4),
copyright (2006).

for the attraction strength, since they correspond to three
different values for the pairing onset T ∗.

Several key points can be made. The transition
temperatures for phase coherent order are not evident when one
studies the pairing gap, as shown in the figure except, perhaps,
in the sample with the lowest T ∗ corresponding to the highest
doping concentration. In this case T ∗ ≈ Tc as in the BCS
limit. In general, in the presence of a pseudogap, the higher is
T ∗ the lower is Tc, which is consistent with what one expects
for BCS–BEC crossover on a lattice [66–69]. Because the
behavior varies so smoothly from above to below Tc one says
that the pseudogap smoothly evolves into the excitation gap of
the superfluid phase (sometimes called the ‘superconducting
gap’). Indeed, independent experiments [29] show that these
two have the same d-wave symmetry.

Ideally, one would like to obtain the analogous plots which
show the temperature dependence of the pairing gap in the cold
Fermi gases, using RF spectroscopy in the BCS, unitary and
BEC regimes. It should be noted that none of the cuprate
curves represent the BEC case. Even though the ratio T ∗/Tc

can be quite large due to lattice effects [66, 70, 71], the high
temperature superconductors are all in the fermionic regime.

In figure 3 the cuprate photoemission spectra near optimal
doping (Tc ≈ 91 K) are plotted for a range of different
temperatures in order to exhibit the effects of emerging phase
coherence. This figure represents angle integrated spectra over
a cut near the d-wave anti-node (where the gap is largest). What
is most striking here is the fact that a sharp quasi-particle peak
emerges only below Tc. Above Tc there is a pairing gap, but it
is associated with a relatively poorly defined (gapped) quasi-
particle. In the BCS–BEC crossover scenario, one might view
this as representing short lived, but non-condensed pairs, which
only below Tc can become long lived and stable.

Figure 3. Temperature dependent photoemission spectra from
optimally doped Bi2212 (Tc = 91 K), angle integrated over a narrow
cut at (π, 0). Inset: superconducting peak intensity versus
temperature. After [28]. Note the sharpening of the peaks as
temperature is lowered below Tc. (Color online.) Reprinted figure
with permission from Damascelli R et al 2003 Rev. Mod. Phys. 75
473. Copyright (2003) by the American Physical Society.

Also of interest in the figure is a feature known as the
dip–hump structure which is associated with superconducting
coherence. There is still controversy over the origin of these
effects, but some [30] have correlated them with specific
bosonic modes which couple to the fermions and appear in
the self-energy.

In a similar vein, it would be interesting to have more
complete analogous studies using RF spectra on the cold gases
as the system varies from above to below Tc. Just what the
precise signatures of superfluid coherence are, and whether
there is evidence that short lived non-condensed pair states
become longer lived below Tc, needs to be addressed. Here one
must (perhaps through tomography) overcome the complexity
introduced because these gases are contained in a trap.

3. General theoretical background

3.1. BCS Leggett T-matrix theory

This paper will address the theory behind RF spectra and
photoemission in the cuprates in the context of one particular
approach to BCS–BEC crossover based on the BCS-Leggett
ground state. Here, however, we generalize to finite
temperatures T . There is an alternative approach [50] to
crossover, based on the Nozieres–Schmitt-Rink scheme [70],
which involves another ground state. Because of the flexibility
of the BCS-Leggett scheme which can readily be generalized
to include trap effects within the superfluid phase, as well as
population imbalance, we choose this alternative. Another
major advantage (from our perspective) is that it is not plagued
by issues associated with a first order transition [72] at Tc.
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These effects are related to analogous behavior [73] in mean
field theories of the Bose gas. Interpretation of the cuprate
data, which shows a smooth evolution through Tc, would be
problematic in the presence of first order effects. A more
detailed discussion of these two distinct approaches to BCS–
BEC crossover is given in [23].

We briefly summarize the key equations which emerge
from our T matrix scheme [14, 23]. Within the present
approach there are two contributions to the full T -matrix:

t = tpg + tsc, (5)

where

tsc(Q) = −�2
sc

T
δ(Q), (6)

and �sc is the superfluid (sc) order parameter. Similarly, we
have two terms for the fermion self-energy:

	(K) = 	sc(K) + 	pg(K) =
∑
Q

t(Q)G0(Q − K). (7)

Throughout this paper, we adopt a four-vector notation: Q ≡
(i�l, q), K ≡ (iωn, k), and

∑
Q ≡ T

∑
l

∑
q,

∑
K ≡

T
∑

n

∑
k, where ωn and �l are the odd and even Matsubara

frequencies, respectively. It then follows that

	sc(k, iωn) = �2
sc

iωn + εk − µ
. (8)

Throughout, the label pg corresponds to the ‘pseudogap’ and
the corresponding non-condensed pair propagator is given by

tpg(Q) = U

1 + Uχ(Q)
, (9)

where the pair susceptibility χ(Q) has to be properly chosen to
arrive at the BCS-Leggett ground state equations and U is the
attractive pairing interaction. We have also assumed a short
range contact potential, which is appropriate for atomic Fermi
gases. We impose the natural condition that below Tc there is
a vanishing chemical potential for the non-condensed pairs

µpair = 0, (10)

which means that tpg(Q) diverges at Q = 0 when T � Tc.
Thus, we approximate [74, 75] 	pg(K) to yield

	pg(K) ≈ −G0(−K)�2
pg T � Tc, (11)

with
�2

pg ≡ −
∑
Q �=0

tpg(Q). (12)

It follows that we have the usual BCS-like form for the self-
energy:

	(k, iωn) ≈ �2

iωn + εk − µ
, (T � Tc) (13)

with
�2(T ) = �2

pg(T ) + �2
sc(T ). (14)

As is consistent with the standard ground state constraints, �pg

vanishes at T ≡ 0, where all pairs are condensed.

Using this self-energy, one determines G and thereby can
evaluate tpg. Then the condition that the non-condensed pairs
have a gapless excitation spectrum (µpair = 0) becomes the
usual BCS gap equation, except that it is the excitation gap �

and not the order parameter �sc which appears here. We then
have from equation (10)

1 + U
∑

k

1 − 2f (Ek)

2Ek

= 0, T � Tc. (15)

For consistency we take for the pair susceptibility

χ(Q) =
∑
K

G0(Q − K)G(K). (16)

Here G = (G−1
0 − 	)−1 and G0 are the full and bare Green’s

functions, respectively.
Similarly, using

n = 2
∑
K

G(K), (17)

one derives

n =
∑

k

[
1 − εk − µ

Ek

+ 2
εk − µ

Ek

f (Ek)

]
, (18)

which is the natural generalization of the BCS number
equation. The final set of equations which must be solved is
rather simple and given by equations (12), (15) and (18). Note
that in the normal state (where µpair is non-zero), equation (11)
is no longer a good approximation, although a natural extension
can be readily written down [53].

We stress that the approximation in equation (11) is not
central to the physics, but it does greatly simplify the numerical
analysis. One can see that correlations which do not involve
pairing, such as Hartree terms, are not included here. This
is what is required to arrive at the BCS-Leggett ground state.
It should be clear that, in principle, the T -matrix approach
discussed here is more general and that in order to address
experiments at a more quantitative level it will be necessary to
go beyond equation (11). These neglected effects can be seen
to enter via ‘G0G0’ correlations in the pair susceptibility χ(Q)

of the T -matrix. They also incorporate Hartree corrections
which will ultimately have to be included for quantitative
comparison with experiment. At high temperatures T ≈ T ∗,
when pairing is weak they were studied some time ago [76],
and at general temperatures in the normal phase, they were
compared [74] with the more strongly pair-correlated ‘GG0’
theory of this paper. Various groups [50, 54] have included
these contributions, which are particularly important for highly
imbalanced gases [54, 62, 63]. These weaker correlation terms
are also seen to give rise to a pseudogap [16, 54, 74], albeit of
somewhat different character than is found in the present BCS-
Leggett formalism.

3.2. Generalization to include population imbalance

One major advantage of the BCS-Leggett approach is that
it is straightforwardly generalized to include a population

7
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imbalanced superfluid. We begin by summarizing the
general equations associated with the so-called ‘Sarma state’,
corresponding to a uniformly polarized BCS superfluid. This
is to be distinguished from the phase separated state [55, 77].

The gap equation is now given by

0 = 1

U
+

∑
k

1 − 2f̄ (Ek)

2Ek

. (19)

Here we define the average

f̄ (x) ≡ [f (x + h) + f (x − h)]/2, (20)

where f (x) is the Fermi distribution function. In addition
we define µ = (µ↑ + µ↓)/2 and h = (µ↑ − µ↓)/2, Ek =√

ξ 2
k + �2, Ek↑ = −h + Ek and Ek↓ = h + Ek, where

ξk = εk − µ.
There are now two number equations given by

n = 2
∑

k

[
v2

k +
ξk

Ek

f̄ (Ek)

]
, (21a)

δn =
∑

k

[f (Ek − h) − f (Ek + h)], (21b)

where n = n↑+n↓ is the total atomic density, δn = n↑−n↓ > 0
is the number difference and δ ≡ δn/n is the polarization.
Here the coefficients u2

k, v2
k = (1 ± ξk/Ek)/2 are formally the

same for both the polarized and unpolarized systems.
Finally, one has to recompute�2

pg, using the same equation
as previously:

�2
pg(T ) = �2(T ) − �2

sc(T ) = −
∑
Q �=0

tpg(Q) (22)

and presuming equation (9) except that the pair susceptibility
appearing here satisfies

χ(Q) = 1
2 [χ↑↓(Q) + χ↓↑(Q)]. (23)

As before, we have the product of one dressed and one bare
Green’s function

χ↑↓(Q) =
∑
K

G0↑(Q − K)G↓(K), (24a)

χ↓↑(Q) =
∑
K

G0↓(Q − K)G↑(K). (24b)

Further details are presented in [53].

3.3. Linear response theory and RF

In the RF experiments [42], one focuses on three different
atomic hyperfine states of the 6Li atom. The two lowest
states, |1〉 and |2〉, participate in the superfluid pairing. These
correspond to ↑ and ↓. The higher state, |3〉, is effectively
a free atom excitation level; it is unoccupied initially. An RF
field, at sufficiently large frequency, will drive atoms from state
|2〉 to |3〉.

We presume the usual grand canonical Hamiltonian H −
µN describes states |1〉 and |2〉. We have outlined in section 3.1
the procedure for handling pairing correlations in this 1-2
channel. The Hamiltonian characterizing state |3〉 is given by

H3 − µ3N3 =
∑

k

(εk − µ3)c
†
3,kc3,k,

where εk is the atomic kinetic energy, c3,k is the annihilation
operator for state |3〉, and µ3 is the chemical potential of |3〉.
In addition, there is a transfer matrix element Tk,p from |2〉 to
|3〉 given by

HT =
∑
k,p

(Tk,p c
†
3,pc2,k + h.c.).

For plane wave states, Tk,p = T23δ(qL+k−p)δ(ωkp−ωL).
Here qL ≈ 0 and ωL are the momentum and energy of the RF
field, and ωkp is the energy difference between the initial and
the final states. In what follows we will set the magnitude of the
tunneling matrix element to unity, without loss of generality.
It should be stressed that unlike conventional superconductor-
normal tunneling, here one requires not only conservation of
energy but also conservation of momentum.

The RF current is defined as

I = −〈Ṅ2〉 = −i〈[H, N2]〉.

Using standard linear response theory [39] one finds

I (ν) = − 1

π
Im[DR(ν + µ − µ3)].

Here we introduce the retarded response function DR(ω) ≡
D(iωn → ω + i0+).

At the lowest order of approximation the linear response
kernel D can be expressed in terms of single particle Green’s
functions as

D0(Q) = T
∑
K

G
(2)
0 (K)G(3)(K + Q),

where K = (k, ωn) and Q = (0, �n). (We use the convention
h̄ = kB = 1.) Green’s function can then be expressed in terms
of spectral functions. After Matsubara summation we obtain

I0(ν) = 1

4π2

∫
dε

∑
k

A(k, ε)A3(k, ε̄)[f (ε̄) − f (ε)], (25)

with ε̄ = ε + ν + µ − µ3, ν is the RF detuning.
We substitute in the known spectral function for state

|3〉, A3(k, ε) = 2πδ(ε − ξk,3), so that the RF response then
depends on the spectral function associated with the superfluid
component |2〉: A(k, ε) ≡ −2 Im G(k, ε + i0+). Then the
lowest order RF current can be written as

I0(ν) = − 1

2π

∑
k

A(k, ξk − ν)[f (ξk − ν) − f (ξk,3)]. (26)

In practice, state 3 is unoccupied; thus the second Fermi
function in brackets vanishes.

8
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3.4. BCS-Leggett model for self energy

The current I0(ν) at the leading order level depends on the
fermionic spectral function, which, in turn, depends on the
fermionic self-energy. In this section we discuss the nature
of the self-energy which will enter into an analysis of both
photoemission and RF spectroscopy.

To arrive at the BCS-Leggett ground state equations, we
have seen that, after analytical continuation, the self-energy is
given by 	(k, ω) = 	sc(k, ω) + 	pg(k, ω), where

	(k, ω) = �2
sc

ω + εk − µ
+ 	pg(k, ω) (27)

≈ �2
sc

ω + εk − µ
+

�2
pg

ω + εk − µ
, T � Tc. (28)

These equations follow, provided one makes the
approximation contained in equation (11). In invoking this
approximation we are in effect ignoring the difference between
condensed and non-condensed pairs which cannot be strictly
correct. The simplest correction to 	pg (which should apply
above and below Tc) is to write an improved form:

	pg(k, ω) ≈ �2
pg

ω + εk − µ + iγ
+ 	0(k, ω). (29)

Here the broadening γ �= 0 and ‘incoherent’ background
contribution 	0 reflect the fact that non-condensed pairs do
not lead to true off-diagonal long-range order. While we can
think of γ as a phenomenological parameter in the spirit of
the high Tc literature [78, 79], there is a microscopic basis for
considering this broadened BCS form [74, 80]. The precise
value of γ and its T -dependence are not particularly important
for the present purposes, as long as it is non-zero at finite
T . For simplicity we generally take γ as a temperature
independent constant. By contrast, 	sc is associated with long-
lived condensed Cooper pairs, and is similar to 	pg but without
the broadening.

It is important to stress that this same self-energy model
has been applied to describe the spectral function in the
pseudogap [44, 78, 79] and the superfluid phases [81] of the
high temperature superconductors, where 	0(k, ω) ≡ −i�0 ≈
−iγ , is taken to be an imaginary constant. In the cuprate
literature (presuming that equation (29) is appropriate to the
normal and superfluid phase), it has been argued that the onset
of coherence coincides with a dramatic decrease in γ below
Tc. Our own perspective is that equation (27) in conjunction
with equation (29) is the more appropriate starting point. That
is, there are two contributions to the self-energy below Tc and
only one above. Thus one should not argue that γ precisely
vanishes at Tc but rather there is a continuous conversion from
non-condensed to condensed pairs as T is lowered within the
superfluid phase. The non-condensed pairs below Tc have
finite lifetime while the condensed pairs do not.

The resulting spectral function, based on equations (29)
and (27), is given by

A(k, ε) = 2�2
pgγ (ε + ξk)

2

(ε + ξk)2(ε2 − E2
k)

2 + γ 2(ε2 − ξ 2
k − �2

sc)
2
. (30)

Here, for convenience we do not show the effects of the 	0

term. Above Tc, equation (30) is used with �sc = 0. It
can be seen that at all k and below Tc, this spectral function
contains a zero at ε = −ξk, whereas it has no zero above
Tc. This means that a clear signature of phase coherence is
present, as long as γ �= 0. In discussing the d-wave pairing
of the cuprates we need to incorporate specific k dependent
factors so that the gap parameters in the self-energy acquire the
form �k,sc = �scϕk and �k,pg = �pgϕk, where we introduce
ϕk = cos(2φ), to reflect the d-wave k dependence along the
Fermi surface. We adopt a tight binding model for the band
dispersion εk, εk = 2t (2−cos kx−cos ky)+2tz(1−cos kz)−µ.
It should be stressed that all gap parameters have the same k

dependence so that the effects of anisotropy, which we will
see later, are not present in the initial gap parameters but rather
appear in the measured spectral gaps.

Finally, this analysis may be readily generalized to include
the effects of population imbalance. We have for the spectral
function of the minority

A2(k, ε) = 2�2
pgγ (ε′ + ξk)

2

(ε′ + ξk)2(ε′2 − E2
k)

2 + γ 2(ε′2 − ξ 2
k − �2

sc)
2

(31)

with ε′ = ε − h.
Similarly, the spectral function for the majority is

A1(k, ε) = 2�2
pgγ (ε′′ + ξk)

2

(ε′′ + ξk)2(ε′′2 − E2
k)

2 + γ 2(ε′′2 − ξ 2
k − �2

sc)
2

(32)

with ε′′ = ε + h.
There are instances where it is problematic to include the

effects associated with the finite lifetime γ . This occurs when
we compute the effects of final state interactions. At this strict
‘mean field’ (mf) level we drop the factor γ , thereby losing the
distinction between condensed and non-condensed pairs. In
this case the spectral function (which we display here for the
polarized gas case) is associated with majority (1) and minority
(2) contributions:

Amf
1 (k, ε) = 2π [u2

kδ(ε − Ek,↑) + v2
kδ(ε + Ek,↓)],

Amf
2 (k, ε) = 2π [u2

kδ(ε − Ek,↓) + v2
kδ(ε + Ek,↑)],

with Ek,↑ = Ek − h and Ek,↓ = Ek + h. We stress again,
however, that here � contains non-condensed pair effects
through equation (14).

3.5. Analytical results for the leading order RF current

It is possible to obtain analytical results for the leading order
current at general temperatures T in this strict mean field
theory. Here one integrates over the momentum to find

I0(ν) = 1

8π2

�2

ν2
[1 − f (E0)]k0, (ν > ν1), (33)

I0(ν) = 1

8π2

�2

ν2
f (E0)k0, (ν2 < ν < 0) (34)

9
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Figure 4. Feynman diagrams for the RF response function D(Q). The left bubble is the lowest order D0, whereas the right diagram, DAL, is
associated with final state effects. Here thin (thick) lines stand for bare (full) fermion propagators, the dashed line for t12, approximated as
the condensate, and double wiggly line for t13. The numbers (blue) indicate the hyperfine levels. Here Q = (i�n, 0) for the RF field.

with

E0 =
∣∣∣∣ν2 + �2

2ν

∣∣∣∣ , k2
0 = µ +

ν2 − �2

2ν
.

The frequency regimes associated with the negative and
positive continua are given by −(

√
µ2 + �2 + µ) � ν � 0

and ν �
√

µ2 + �2 − µ. In the above equations ν2 ≡
−(

√
µ2 + �2 +µ) and ν1 ≡

√
µ2 + �2 −µ. It can be seen that

there are contributions for both negative and positive detuning.
At strictly zero temperature, the Fermi function vanishes, and
we have only the positive continuum:

I0(ν) = 1

8π2

�2

ν2

√
µ +

ν2 − �2

2ν
. (35)

In the same way, it is also possible to write down a closed
form expression for the polarized case at general T as well.
Because the expressions are more cumbersome, we defer this
to appendix A.

3.6. Behavior in traps in absence of final state effects

Once the trap is incorporated, one has to solve for the current
at each position r and then integrate in the form

Iσ (ν) =
∫

d3r I (r, ν)nσ (r), (36)

where nσ (r) represents the particle density within the trap
and σ = 1, 2 are the different hyperfine levels of the
superfluid. To handle the trap effects we assume a spherically
symmetrical harmonic oscillator potential V (r) = mω̄2r2/2.
The density, excitation gap and chemical potential which vary
along the radius can be determined [53] using the local density
approximation (LDA).

It should be stressed that the density and gap profiles
(nσ (r) and �(r)) in general involve pseudogap or non-
condensed pair effects. The strict mean field theory,
which often gives a reasonable approximation to the spectral
functions, is not adequate for obtaining these trap profiles.
Thus, even when analyzing tomographic RF data, one has to
include the full effects of these pair excitations [53], effectively
through �2

pg(r) and non-zero µpair(r).

4. Final state effects in homogeneous unpolarized
system

We now turn [52] to the inclusion of final state effects which
go beyond the leading order diagram. It is complicated to

handle these contributions for the inhomogeneous case. Thus
we focus here on computing the RF current in the homogeneous
limit. We formulate the finite T , RF problem using a
diagrammatic scheme, where the diagrams for the RF response
function, D(Q), are shown in figure 4. The leading order term
D0 appears as the first term on the right hand side and the
second contribution is associated with the Aslamazov–Larkin
(AL) diagram (called DAL). The full RF current, given by
the retarded response function, is I (ν) ≡ −(1/π) Im DR(�),
where � ≡ ν + µ − µ3.

The approximation compatible with equation (11) is
effectively equivalent to treating the DAL in figure 4 at the
BCS mean field level, leading to the opposite momenta ±K

for particles 1 and 2 in the diagram. DAL(Q) depends on �,
not �sc, and incorporates final state effects via the interactions
g12 between 1 and 2 and g13 between 1 and 3. We neglect the
effects arising from the interaction between 2 and 3. This
is consistent with the approach in [48]. This second term
has appeared previously in studies on superfluid density [82].
Our formulation of the finite T , RF problem can be made
compatible with the diagrams in [50], although attention in
that paper was restricted to very low temperatures. Our
diagrammatic scheme reduces at T = 0 to the approach of [51].

In order to evaluate the AL term, we begin by writing out
the relevant T -matrices

t−1
12 (Q) = g−1

12 +
∑
K

G1(K)G0
2(Q − K), (37)

t−1
13 (Q) = g−1

13 +
∑
K

G1(K)G0
3(Q − K), (38)

where g12 and g13 parametrize the interaction between 1 and
2, and 1 and 3, respectively. We can also introduce the s-wave
scattering lengths, a13 (and a12) in the 1-3 (and 1-2) channels,
respectively.

Thus
t−1
13 (Q) = m

4πa13
+ χ13(Q), (39)

where

χ13(Q) = −
∑

k

[
1 − f (Ek) − f (ξk,3)

i�n − Ek − ξk,3
u2

k

+
f (Ek) − f (ξk,3)

i�n + Ek − ξk,3
v2

k +
1

2εk

]
. (40)

The AL diagram yields

DAL(Q) =
[∑

K

F(K)G0
3(K + Q)

]2

t13(Q), (41)

10
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where

F(K) ≡ −�G(2)(K)G
(1)
0 (−K) = �

(iωl)2 − E2
k

. (42)

This contribution can be rewritten as

DAL(Q) ≡ D2
2(Q)t13(Q), (43)

where we have defined

D2(Q) ≡
∑
K

F(K)G0
3(K + Q)

=
∑
K

�

2Ek

[
1 − f (Ek) − f (ξk,3)

i�n − Ek − ξk,3

− f (Ek) − f (ξk,3)

i�n + Ek − ξk,3

]
. (44)

Then the full set of diagrams shown in figure 4 can be
combined to yield

D(Q) = D0(Q) +
[D2(Q)]2

m/4πa13 + χ1,3(Q)
. (45)

After analytical continuation and change of variables,
we have � ± Ek − ξk,3 = ν ± Ek − ξk . Importantly, the
denominators here are the same as those which appear in t12.
Furthermore, at ν = 0, f (ξk,3) is canceled out so that

t−1
13 (0) = (g−1

13 − g−1
12 ) + t−1

12 (0) = g−1
13 − g−1

12 . (46)

It follows that the complex functions D0(Q), χ1,3(Q) and
D2(Q) are the same as their wave function calculation
counterparts [51] when the pairing gap � is chosen to be order
parameter �sc and T = 0. It is ν, not �, that should be
identified with the experimental RF detuning.

After some straightforward algebra (with details in
appendix B), we find for the RF current

I (ν) =
[

1

g12
− 1

g13

]2
I0(ν)

|t−1,R
13 (ν)|2

= − 1

π

(
m

4πa13
− m

4πa12

)2 ImDR
0 (ν)

|t−1,R
13 (ν)|2

= − 1

π

[
m

4πa13
− m

4πa12

]2
�2

ν2
Im tR13(ν). (47)

Moreover, in the special case, when a13 = a12 then I (ν) =
(n2 − n3)δ(ν), as shown in appendix C.

Equations (47) are the central result. It should be clear that
final state effects in the RF current directly reflect the T -matrix
in the 1-3 channel. In general, features in the RF spectra derive
from the poles and the imaginary parts of D0(Q), χ1,3(Q) and
D2(Q).

The spectrum may contain a bound state associated with
poles at ν0 in t13, as determined by t−1

13 (ν0) = 0. This
leads to the so-called ‘bound–bound’ transition. In addition,
there is a continuum associated with both the numerator
and the denominator in the first of equations (47), with
each contribution spanned by the limits of ν = ξk ± Ek ,

i.e. −(
√

µ2 + �2 + µ) � ν � 0 and ν �
√

µ2 + �2 − µ.
The continuum at positive frequencies is primarily associated
with breaking a pair and promoting the state 2 to state 3.
This represents the so-called ‘bound-free’ transition. On the
negative detuning side, the continuum is primarily associated
with promoting to state 3 an already existing thermally excited
2 particle. The spectral weight of the negative continuum
vanishes exponentially at low T .

4.1. Sum rules

Of importance in assessing any theoretical framework for
computing the RF current are the two sum rules associated
with the total integrated current and the first moment or ‘clock
shift’ [48]. Using the Kramers–Kronig relations between
Re tR

13 and Im tR
13, we prove in appendix D that, not only in

the ground state but also at finite temperature, equation (47)
satisfies ∫

dν I (ν) = n2 − n3, (48)

∫
dν ν I (ν) = �2 m

4π

(
1

a12
− 1

a13

)
, (49)

where n2 and n3(= 0) are the density of state 2 and 3 atoms,
respectively. In this way we find for the clock shift a result
which we write (for general polarizations, associated with the
subscript σ ) in the form

ν̄σ =
∫

dν νIσ (ν)∫
dν Iσ (ν)

= �2

nσ − n3

m

4π

(
1

a12
− 1

a13

)
. (50)

In the unpolarized case, this agrees with [48]. This sum rule
is satisfied only when a13 �= 0 and when both diagrammatic
contributions are included. It is easy to show that at large
ν, I0(ν) ∼ ν−3/2, Im tR13 ∼ ν−1/2, so that I (ν) ∼ ν−5/2, in
agreement with [50]. Clearly, the first moment of I (ν) is
integrable, whereas the first moment of I0(ν) is not. Finally,
equation (47) reveals that the spectral weight (including
possible bound states) away from ν = 0 will disappear when
the gap � vanishes.

5. Physical picture and implications

In this section we lay the groundwork for a comparison
between theory and experiment, which is presented in the
following section. We address the various phase diagrams for
the population balanced Fermi gases, including the (d-wave)
lattice case, as well as for the imbalanced systems. We
analyze a pedagogically useful set of figures which lay out
the general behavior of the RF spectra with and without final
state effects and with and without a trap. Importantly, we
compare photoemission-based plots for the same parameter set
as RF-based plots and address the key signatures of emerging
superfluid coherence as one goes from above to below Tc.
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Figure 5. Phase diagram showing Tc and T ∗ for homogeneous s-wave Fermi gas superfluid (left) and for d-wave superfluid on a
quasi-two-dimensional lattice; from [71]. Note that the BEC asymptote is finite in a Fermi gas and zero in the lattice case. Because the
lattice phase diagram shows similarity to that of the cuprates, in future experiments it will be important to study the d-wave generalization
of the attractive Hubbard model on an optical lattice.

Figure 6. This summarizes the phase diagrams for polarized gases with and without a trap and with and without pairing fluctuations. The
figure is based on [53, 58]. The figures on the left are for the homogeneous case and on the right for the trapped case. The mean field figures
at the top show the reported tri-critical point. However, fluctuations (in the lower two plots) depress the superfluid phases. Here TF is the
Fermi temperature of an unpolarized non-interacting Fermi gas with the same total particle density.

5.1. Phase diagrams

The relevant phase diagrams to be used and referred to in
our RF calculations have been obtained elsewhere. Shown
in figure 5 are the curves for Tc and T ∗ comparing the phase
diagram for an s-wave paired Fermi gas (left) and for a d-wave
paired fermion system (right) on a quasi-two-dimensional
lattice. The s-wave gas case is closely analogous to the
results obtained using the approach of [70, 83]. The d-wave
case was discussed earlier in [66] and more recently in the
context of optical lattice calculations in [67, 71]. The seminal

Nozieres–Schmitt-Rink paper pointed out a key fact which
identifies a notable difference between the lattice and gas cases:
the BEC limit has an asymptote of Tc → 0 in the case of a
lattice, whereas it is finite in a gas. Thus there is a relatively
larger separation between T ∗ and Tc when fermions are present
on a lattice as shown in the figure. We note that the d-wave
case has a number of features in common [66, 67, 71] with the
counterpart phase diagram [18] in the cuprates.

The phase diagrams for polarized (s-wave) Fermi gases are
shown in figure 6. The four panels correspond to the effects
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Figure 7. This figure shows the behavior of the excitation gap as a
function of temperature3 for the Fermi gases at three different
scattering lengths. This should be compared with figure 2 for the
cuprates. Arrows indicate locations of Tc.

of including (or not) a trap and to the effects of including
(or not) pairing fluctuations beyond strict mean field theory,
which enter in the theory through the parameter �2

pg. When
we discuss the RF behavior of polarized gases we will use the
full beyond-mean-field theory phase diagrams, although some
of the calculations of the spectral function are performed at the
strict mean field level.

Beyond the normal phase, there are three phases which
appear [53, 58]: the Sarma phase, a phase separated (PS) state
and a pseudogapped normal state, as indicated. We note that
the treatment of the normal component of the phase separated
state does not include correlations beyond those accounted for
by �. As a result, these calculations overestimate the range
of stability of phase separation. This issue has been nicely
discussed in the theoretical literature [61, 62] with implications
for RF spectra as well [54, 63]. The Sarma phase should be
considered as the more correctly treated here and one notes
an important finding: in the absence of a trap the regime of
stability of the Sarma state is greatly reduced. This more
restricted stability (seen by comparing the two lower figures)
is associated with the fact that the excess majority fermions
can be accommodated more readily in different spatial regions
in a trap. The maximum polarization of this homogeneous
Sarma phase is around δ = 0.2 which is close to that reported
experimentally [84].

5.2. Comparison with the cuprates

We present in figure 7 a plot of the excitation gap in the cold
gases for three different values of the s-wave scattering length
in units of 1/kFa which are near unitarity (a = ∞) and on both
the BCS and BEC sides. This figure should be compared with
figure 2 for the cuprates. Here the excitation gap is estimated
using equation (15) for all temperatures3. Also indicated on the
curves is the value of the transition temperature. This figure
makes it clear that pseudogap effects, which are essentially
absent on the BCS side of resonance, are very apparent at
unitarity, where the Fermi gas has a positive chemical potential.

3 Above Tc one should ultimately include the effects associated with non-zero
µpair . We ignore them here for simplicity and use strict mean field theory to
estimate the excitation gap everywhere.

Figure 8. This is a photoemission-like plot for a homogeneous
unitary Fermi gas based on equations (29) and (2). Here
Tc = 0.27TF and T ∗ ≈ 0.5TF. The figure shows that the onset of
superfluid coherence leads to a sharpening of the peak structure. We
take γ to be �/2. This figure can be compared with figure 2.

In both the unitary and BEC cases, � is roughly temperature
independent below Tc.

Figure 8 represents a photoemission-like study, but for
the parameters associated with a unitary (homogeneous) Fermi
gas. Here the vertical axis plots the k integral of I photo(k, ω)

based on equation (2) assuming a structureless matrix element
M0. This figure should be compared with the cuprate data
in figure 3. The various curves correspond to different
temperatures as indicated with Tc = 0.25TF and T ∗ ≈
0.5TF. The self-energy is based on equation (29) for the non-
condensed pair component with γ = 0.25EF and 	0 = �0 =
0.1EF. What is most notable about this figure is the progressive
sharpening of the ‘photoemission’ peaks associated with the
growth of coherence as T decreases. This same effect is seen in
the cuprate data (figure 3). One notes here, however, that there
is some shift of this peak position reflecting an increase in �

with decreasing T , which is not seen in the cuprate data. This
effect can be attributed to the fact that there is a substantially
larger separation [67, 69, 71] between T ∗ and Tc in the case
of a lattice (away from the BCS regime) than for a gas such
as shown here. This is apparent in figure 5. Thus, there is
more temperature dependence found in the excitation gap of
the superfluid phase (if one compares with the same value
of T ∗).

5.3. Overview of RF spectra: homogeneous case

The top panel of figure 9 represents a plot of characteristic
RF spectra for a unitary gas without final state effects and
at a moderate temperature below Tc. Here we use strict
mean field theory. Indicated in the figure are the various
energy scales showing the location of the pairing gap �

as well as the thresholds associated with the negative and
positive continua. Spanned by −(

√
µ2 + �2 + µ) � ν � 0

and ν �
√

µ2 + �2 − µ, these are indicated as ν2 and ν1.
These RF spectra exhibit a two peak structure, even in this
homogeneous situation, with the lower peak corresponding
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Figure 9. Pedagogical figure showing typical RF spectra of unitary
homogeneous gas at a temperature somewhat below Tc. The various
characteristic energy scales are labeled. Upper panel corresponds to
absence of final state effects while lower panel includes final state
effects in rather extreme limit of a (weakly) bound state in the
negative continuum. This is the optimal situation for using the sum
rules to extract �.

to the negative continuum. This behavior was found earlier
in [41], although subsequent normal state work [54] using the
alternative (G0G0), more weakly correlated pair susceptibility,
argued that only one peak would appear in a homogeneous
system.

One can see from figure 9 that there is a substantial
separation between the pairing gap value and the threshold ν1

and there is very little in the figure to suggest a way of extracting
the pairing gap. This has presented a dilemma for the field.
One way to address this issue is to exploit the sum rule in
equation (50) which is appropriate provided one includes final
state effects. In the lower panel we show the same spectra when
final state effects are included. We have chosen a very special
case for illustrative purposes in which a (meta-stable) bound
state overlaps the negative continuum [52]. This represents
the most ideal example for exploiting sum rule constraints to
extract the pairing gap. One can see here that because the
bound state is in the negative continuum, the bulk of the spectral
weight is confined to a narrow frequency weight spanning from
ν2 to 0.

In figure 10 we show the estimated values for the pairing
gap � of a unitary gas obtained from the sum rule as integrated
from ν = −2EF to ν = +2EF compared with the exact pairing
gap. The accuracy is within 10%. To arrive at a case where
the final state is on the BEC side of resonance is reasonably
straightforward and the 1-3 superfluid, which exhibits this
behavior, is now well studied by the MIT group [31]. However,
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Figure 10. Based on previous figure and equation (50), plotted here
are pairing gaps �(T )/EF versus temperature as computed exactly
and as computed from a limited integration, using the sum rule.
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Figure 11. This is the RF counterpart of figure 8 for homogeneous
unitary gas. The main body of the figure plots the higher T behavior
and the inset shows the results at lower T when superfluid coherence
is well established. Just as in photoemission, there appears to be a
signature of this coherence in the RF spectra which is associated
with a rather sharp threshold behavior, as seen in the inset.

we point out that for this unitary 1-3 superfluid and for typical
values of kF the bound state is deep and well removed from
the continuum. By contrast, the case shown here results from
a situation in which kF is increased from the currently quoted
experimental values by about a factor of 10. While this may
not be easy to achieve in the near future, it does point to
the advantage of exploiting final state effects to focus the
spectral weight in the more well-confined, negative ν regime.
Moreover, for a 1-3 superfluid on the BCS side of resonance,
the pairing gap as obtained via sum rules is more accessible
experimentally, as was pointed out [52] earlier.

We plot in figure 11 the homogeneous spectra in the
absence of final state effects but now for the case in which we
go beyond strict mean field theory and, thereby, differentiate
the condensed and non-condensed pairs on the basis of
equation (29). We have chosen the same parameters as
in figure 8. In contrast to this earlier photoemission-
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Figure 12. Evidence that Tc may show up as a feature in RF
spectroscopy. Based on the results of figure 11, plotted here is the
RF current magnitude at zero detuning (for a homogeneous balanced
unitary gas without final state effects) as a function of temperature.

based calculation, one applies equation (3) to describe the
RF experiments. Each of the curves corresponds to the same
temperatures as their counterparts in figure 8. It can be seen
that the shape of the RF spectra is very different from that
of photoemission (even in the absence of final state effects),
because of the constraint introduced by ω = ξk − ν which
appears in equation (3). There are two peak structures at higher
T , even in this homogeneous situation, with the lower peak
corresponding to the negative continuum.

The temperature regime is separated into the superfluid
phase in the inset and the normal phase in the main body.
The differences between the two sets of curves support the
fact that there are signatures of superfluid coherence in RF
spectroscopy. While there are no abrupt changes at Tc,
nevertheless, like the quasi-particle peak sharpening seen in the
cuprates (in figure 3) one sees some sharpening of the positive
ν threshold as the temperature crosses Tc.

To quantify this, figure 12 shows a plot of the zero detuning
current for this balanced gas as a function of temperature.
There is a feature at Tc which may make it possible, in principle,
to extract this transition temperature from high resolution RF
experiments. Thus, there are indications in the RF spectrum
of superfluid coherence, as seen in photoemission plots. RF
techniques may ultimately prove useful for making quick
estimates of whether these atomic systems are in the superfluid
phase or not without resorting to the much more complex
experiments which involve vortex generation. Moreover one
infers from this figure that the negative continuum begins to
be perceptible as the temperature approaches Tc.

5.4. Momentum resolved RF

We now turn to momentum resolved RF spectra which
effectively measure the occupied spectral intensity. Later
in figure 21, we will study some potentially analogous
experiments which address momentum resolved (or ‘angle
resolved’) photoemission in the cuprates. In figure 13, we
present a contour map of the occupied spectral intensity as a
function of single particle energy and wave vector k. Here

Figure 13. Contour plots of occupied spectral intensity for the
homogeneous case at unitarity at T/Tc ≈ 1.9. The top and bottom
lines in the contour plots correspond to the two quasi-particle
dispersions µ ±

√
((k2/2m − µ)2 + �2) and the middle line is that

of the free atom dispersion.

we consider the homogeneous case. The lighter regions of
the figure correspond to where the occupied contribution from
the spectral intensity is highest. The temperature here is
chosen to be relatively high, around 1.9Tc, in order to have
some contribution to the RF current from pre-existing thermal
fermionic excitations. The intensity map indicates upward and
downward dispersing contributions. These correspond, to a
good approximation, to the two RF transitions: to state 3 from
state 2 with dispersion (Ek + µ) and (−Ek + µ), respectively,
which are shown in figure 1. These are measured relative to
the bottom of the band. The width of this contour plot comes
exclusively from the incoherent terms γ and 	0. Here we have
chosen to represent the latter by an imaginary constant (as in
the cuprate literature) 	0 = −i�0. Based on equation (29) and
for illustrative purposes we take γ = 0.25TF and �0 = 0.1TF,
with a small resolution broadening (typical of the experiment)
as well.

One can see that the bulk of the current, even at this high
temperature, is associated with the pair states which are broken
in the process of the RF excitation. This figure describes
in a conceptual way how this intensity map can be used to
compare with a broadened BCS-like form [27, 74] for the
spectral function. This form fits very well the two branches
shown in the figure corresponding to upward and downward
dispersing curves. In this way one can, in principle, establish
the presence of pairing and extract the pairing gap size.

We stress that these calculations are for the homogeneous
case and it is important to extend them to include the effects
of a trap. This can be done within an LDA approximation
scheme. Once the trap is included the simple analogy between
the electronic ARPES experiments and momentum resolved
photoemission spectroscopy is invalidated. However, many of
the central features survive. While the two branches shown in
the contour plot in figure 13 are, in principle, present, there is
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a third new branch which appears as well. This corresponds
to essentially free atoms at the trap edge which will contribute
significantly [43, 45] to the RF current. It is this branch which
is also upward dispersing which makes it rather difficult to see
the effects of the pre-existing thermally broken pairs.

We summarize the results shown elsewhere [85] for the
behavior of the occupied spectral intensity in a unitary trapped
gas over a range of different temperatures. At high T , the
central notable feature is a single upward dispersing curve
which fits the free particle dispersion. This dispersion can
be readily differentiated from that associated with pre-existing
thermally broken pairs which varies as Ek + µ and, of course,
depends on the distribution of energy gaps �(r). It arises from
free atoms at the trap edge (where the gap �(r) is small). As
the temperature is decreased toward Tc a second (downward
dispersing) branch becomes evident. In the vicinity of the
transition, the intensity map is bifurcated with two co-existing
peaks: one coming from the free atoms at the trap edge and
the second from the condensate pairs which are broken in the
process of the RF excitation. The separation of the two peaks
can be difficult to discern until k values are sufficiently high.
Finally, at the lowest temperatures the striking feature is a
single downward dispersing branch. This reflects the fact that
essentially all atoms are now paired in the condensate. Just
as in the homogeneous case discussed above, a BCS-like fit to
this dispersion can be used to determine the pairing gap. We
stress that there are no abrupt changes in the RF behavior at
the superfluid transition, very much like what we saw earlier
in our summary of the cuprate literature.

6. Analysis of theoretical and experimental RF
spectra

6.1. Momentum resolved spectroscopy

We now compare theory and experiment in a trap based on
the momentum resolved spectra previously discussed for the
homogeneous case. In figure 14 we have taken a larger intrinsic
broadening and included an empirical resolution broadening as
well, again somewhat larger than the value indicated for the
experiments. These parameters are seen to optimize semi-
quantitative agreement with the data plotted in the top panel
from [27].

The bottom panel presents the theoretical intensity maps.
The dotted white curve represents a fit of the experimentally
deduced peak dispersion while the solid white curve is the
theoretical counterpart. Here, as in the experiment, we have
fit the energy distribution curve to a single Gaussian peak.
The comparison between the two white curves shows semi-
quantitative consistency. Moreover, both the solid and the
dotted white curves can be well fit to the BCS dispersion
involving Ek, as was originally proposed in [76]. While
figure 14 seems to capture the essential results shown in the
experiment, with higher resolution it should be possible to
obtain more direct information about the mean experimentally
deduced gap size. Importantly, this reasonable agreement and
the fact that the experiments were done near Tc suggest that
there is a sizable pseudogap in the Fermi gases at and above
Tc at unitarity.

Figure 14. Contour plots of momentum resolved RF spectra in a
trapped configuration. Top panel (a) is experimental data [27].
Reprinted by permission from Macmillan Publishers Ltd: Nature
(454 744–7), copyright (1969). Theoretical results (b) correspond to
occupied spectral intensity map, in a unitary trapped Fermi gas at
T/Tc = 1.1. Here 	0 = 0.35E0

F and γ = 0.38E0
F at the trap center.

The upper (red) curve represents the free atom dispersion, while the
white solid and dashed curves are the quasi-particle dispersion
obtained theoretically and experimentally [27], respectively, via
fitting the energy distribution curves (EDCs) with a single Gaussian.

6.2. RF spectra in a trap

In figure 15 we show typical RF spectra in the trapped case.
The figure indicates that there are two peaks at intermediate
temperatures (top panel) and one peak at very low T (bottom
panel). The interpretation of the former case has been in the
literature since the early work in [42, 43, 45]: the zero detuning
contribution comes from free atoms at the trap edge while
the broad peak is associated with pairing. These theoretical
observations have also been made recently [54] in the context
of comparing the behavior in the homogeneous case (for
which, evidently, no negative detuning peak was found in
the normal phase) and the trapped cases. By contrast, within
the present theoretical framework, a two peaked structure is
predicted for a homogeneous gas as well [41, 52]. We have
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Figure 15. Comparison of calculated RF spectra of a trapped gas
(solid curve, Tc/TF ≈ 0.29) with experiment [42] (symbols) in a
harmonic trap calculated at 822 G for two (estimated) temperatures;
from [45]. The dashed lines are a guide to the eye. There is
reasonable agreement, but because final state effects are not
included, the high frequency tails are overestimated in the theory.

seen that this negative peak is associated with thermally excited
quasi-particles.

Figure 15 compares RF spectra in a trap near unitarity
(solid curve) with experiments from [42] (symbols) at 822 G
on 6Li and for two different temperatures. The dashed curve
is a fit to the data, serving as a guide to the eye. While the
upper peak reflects the existence of pairing, it is not possible
to directly infer the size of the (trap averaged) pairing gap �.
However, it is now reasonably clear [15] that a pairing gap
(pseudogap) is present in the normal state even in these early
experiments from the Innsbruck group. The lower curve can
be interpreted to suggest that the atoms at the trap edge have
lower temperatures compared with �(r, T ). The agreement
between theory and experiment is not unreasonable for this
leading order calculation (based on I0(ν)). One can, however,
see that the theory in both cases shows a much slower drop-off
with increasing high frequency than seen experimentally. We
will see shortly that this difference is associated with final state
effects.

In figure 16 we present similar RF spectra for [53] a
trapped imbalanced gas near unitarity. The polarization is
δ = 0.5, and the spectra are plotted for three different
temperatures. Here Tc/TF = 0.25. It is useful to refer back to
the lower right panel in figure 6 to see precisely what region
of the polarized gas phase diagram is relevant. The red curves
correspond to the majority and the blue to the minority. For
the majority, one can see that the free atom peak at ν = 0
is present at all temperatures, unlike the previous case in a
balanced gas. At the highest temperature T/TF = 0.4 (which
is close to T ∗/TF ≈ 0.35) the system is normal and pairing is
absent. Very close to Tc in the middle panel one sees a clear
pairing peak signature associated with the pseudogap. For this
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Figure 16. RF spectra for a trapped unitary imbalanced gas with
δ = 0.5. Here we take γ /E0

F = 0.05. Four different temperatures
are indicated. Majority spectra are in (red) dashed lines and
minority in (blue) solid lines.

analysis we chose the broadening in equation (29), to be very
small with γ = 0.05EF.

6.3. Final state effects

As we saw in figure 15, final state effects are expected to cut off
the long tails in the RF spectra found theoretically in the lowest
order theory. It has been argued [31] by the MIT group that one
should limit the importance of these final state contributions by
studying a unitary 1-3 superfluid instead, with an RF transition
involving (for example) 3 → 2. For this case the magnitude
of the final state scattering length is small, although it is
positive. This will lead to a bound state contribution in the
spectra, although it will not perceptibly change the shape of
the continuum contributions. One could alternatively argue
that it is better to work with the 1-2 superfluid where there are
(generally) no bound states and where one can, more readily,
impose the sum rules to arrive at estimates of the pairing gap.
At this point both options should be explored.

In figure 17 we compare homogeneous spectra at T =
0.15TF with and without final state effects for these two
different superfluids at unitarity. All figures have been
normalized to the same maximum value. The figure on the top
corresponds to the configuration of the Innsbruck experiments
[42] and on the bottom to recent MIT experiments [31]. It can
be seen that final state effects in both cases do not change [47]
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Figure 17. Comparison of homogeneous RF spectra of a unitary
gas with (red, dashed) and without (black) final state effects at
T/TF = 0.15. The top figure is for the 1-2 superfluid and the bottom
is for the 1-3 case, showing a bound state. Calculations were done
with γ = 0.

the threshold ≈0.4� for the positive continuum (discussed in
section 4). However, they do lead to a somewhat sharper peak
and to a more rapid fall off at high detuning, as is consistent
with the sum rules.

It is not easy to do the calculations which include final
state effects in a trap so we can only qualitatively infer from
the top panel in figure 17 that the corrections associated with
their inclusion are what is needed to improve the agreement
between theory and experiments on the 1-2 superfluid in
figure 15. If final states introduced a bound–bound transition
on the BCS side of resonance, as conjectured [31], it would
probably not be sufficiently robust with respect to temperature
[52], and would likely merge with the continuum with
increasing T . Moreover, this positive continuum contribution
is always present (provided, of course, that there is pairing);
theoretically, one never finds simply an isolated bound–bound
transition. With a small amount of lifetime broadening (γ )
it is likely that a final state induced bound–bound transition
on the BCS side of resonance would not make a noticeable
difference. In this way, although some concern has been
raised [31] about whether or not the Innsbruck experiments
were properly interpreted as evidence for a pairing gap (rather
than a possible bound–bound [51] transition), we concur with
their original interpretation.

By contrast with the 1-2 superfluid, when final state effects
for the 1-3 superfluid are included, there is little change in the
shape of the spectra (shown on the bottom). There is, however,
an important change of vertical scale associated with the bound
state and related to the sum rule.
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Figure 18. Homogeneous RF spectra of unitary, population
imbalanced (δ = 0.5) gas at very low T/TF = 0.05, where phase
separation is stable. Upper panel is density profile indicating radii
(a) and (b) used in lower two panels to compute the tomographic or
homogeneous spectra. (Red) dashed lines are majority and (blue)
solid lines are minority. No final state effects are included and we
take γ /E0

F = 0.05.

6.4. Tomographic scans in imbalanced gases

In figure 18 we turn to effectively homogeneous spectra
associated with tomographic plots in the same imbalanced gas
(δ = 0.5) studied earlier. Here we consider extremely low
temperatures so that [58] the system is in the phase separated
state as can be seen from the lower right plot in figure 6. One
can see this phase separation in the top panel which presents
the density profiles. Also indicated are the two points (a)
and (b) which establish the radii (used in the lower panels)
at which the RF spectra are plotted. Here RTF =

√
2EF/mω2

is the Thomas–Fermi radius and m and ω denote the fermion
mass and trap frequency. The (red) dashed and (blue) solid
curves are for the majority and minority, respectively. The
middle panel shows that just inside the superfluid core there
is very little difference in the majority and minority spectra as
expected for a locally unpolarized superfluid. The lower panel
shows the behavior just on the other side of the phase separation
boundary where there is very little minority and hence very
little pairing. As a consequence the RF peaks are close to zero
detuning. We stress here that we are using the strict BCS-
Leggett theory without including Hartree effects. With the
latter included there may be a relative shift of the energy scales
associated with the majority and minority atoms [64].
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Figure 19. Comparison between theory and experiment [64] in top panel, for tomographic scans of an imbalanced unitary gas. Theory
assumes δ = 0.5, for definiteness. Here T/TF = 0.15. The calculations are for a 1-3 superfluid (as in experiment) with final state effects
included (1/kFa12 = 2.5), and γ = 0. Light (red) indicates majority and dark (blue), minority. Hartree effects have not been included in
theory and the horizontal scales are thus different. Arrows indicate the position of the gap. Here, following experiment we use the local
Fermi energy of the majority atoms in the trap. In all other figures, EF is used, corresponding to the bulk Fermi energy. Reprinted excerpt
with permission from Schirotzek A et al 2008 Phys. Rev. Lett. 101 140403. Copyright (2008) by the American Physical Society.

Figure 19 presents a comparison between theory
(with final state effects) and experiment [64] at moderate
temperatures (Tc = 0.25TF) within the bulk Sarma phase.
The theory and experiments are for the 1-3 superfluid at
unitarity. The upper panel corresponds to recent data from
MIT [64], indicating via a contour plot, the various radii
probed in the tomographic scans. In the lower panel, the
counterpart theoretical profile indicates four different radii via
(a), (b), (c) and (d). Also shown in the theory by the arrows is
where −� would be found within the negative continuum.
One sees a reasonable correspondence between theory and
experiment, except in the last panel at the largest radius. Here
presumably there are polaron [54, 63] effects (a binding of
a single minority spin to the bulk majority) which are not
included in the calculations. We stress that additionally Hartree
effects have not been included in the theory so that the zeros
of the horizontal energy scales are not equivalent.

These Hartree effects have been extensively analyzed
in [64]. Moreover, these authors have exploited a simple
physical picture of the extreme low imbalance, low temperature
behavior of the Sarma phase to argue that one can extract
the size of the pairing gap � at unitarity from the maximum
in the negative peak in these same data. In figure 20(a)
we present tomography-based calculations implementing this
procedure. Here we plot the spectra for various radii at very
low temperatures, T/TF = 0.02, and for very low polarization
δ = 0.01. The top inset shows a blow-up of the very small
negative detuning peak while the bottom inset shows that
the position of the maximum is, as conjectured, [64] very
close to the actual gap size. A more realistic situation is
outlined in figure 20(b) (lower panel) where the polarization
has been raised to δ = 0.1 and one can now detect the
negative detuning peak more directly. Here one sees that there
is roughly a 20% error in the estimate of the pairing peak
size, compared with its actual value. This is consistent with

the observations in previous figures as well. It is difficult to
extrapolate to the nearly unpolarized case, say in the trap center,
because as emphasized in figure 20(a), at low T and low δ the
negative detuning peak simply cannot be detected. It does
seem likely that errors of the order of 20% to, perhaps, 30%
will be encountered when this procedure is implemented [64]
to extract the gap size.

7. Photoemission experiments in the cuprates

We now turn to recent issues in photoemission experiments
[86] in the underdoped cuprates. These call attention to the
question of how the k dependence of the spectral function
varies as one crosses Tc. These same issues may surface
ultimately with momentum resolved RF spectroscopy [27],
although it is only the magnitude of k, rather than its angular
dependence, which will be of interest. An earlier discussion
on the cuprates in figure 3 focused on the k integrated
photoemission spectra. As in this previous figure here we
address how superconducting coherence is manifested when
there is a normal state pseudogap. We stress that measurements
like photoemission and RF spectroscopy are not phase sensitive
probes of the system and cannot directly prove the existence
of superfluidity.

We first focus on the region near the gap nodes, where
the gap is smallest. The experiments of interest here
very likely contain important clues as to the nature of the
superconducting state which appears in the presence of a
normal state pseudogap. While many aspects of the cuprates
below Tc appear to be typical of (d-wave) BCS superconductors
one expects some differences to appear simply because an
excitation gap is present at the onset of superconductivity.

There are four key points which have been identified
in [86]. We believe these are consistent with a BCS–BEC
crossover interpretation of these cuprate photoemission data.
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Figure 20. This figure addresses the feasibility of using the negative
detuning peak to extract the pairing gap from a slightly polarized
gas, following the suggestion in [64]. Panel (a) refers to the ideal
case and the upper inset makes it clear that while the negative peak
is at the gap frequency, it will be very difficult to detect for this a
small polarization (δ = 0.01). Panel (b) refers to a more moderate
polarization (δ = 0.1) where there will be roughly a 20% error in
the gap as estimated this way. In both insets the (red) dashed and
(black) solid curves correspond, respectively, to the precise
theoretical results for � and to those inferred as described here.

As reported [86] (i) the excitation gap, �(k), as measured
in photoemission experiments, remains roughly constant at
temperatures from very low T to temperatures well above Tc.
(ii) In the superfluid phase �(k) displays the expected point
nodes (associated with d-wave symmetry); however, these
rapidly broaden into Fermi arcs once the temperature reaches
the vicinity of, and surpasses Tc. Importantly, ‘this remarkable
change occurs within the width of the resistive transition at
Tc’. (iii) It has also been reported [87] that the energy scale
associated with the excitation gap appears to be T ∗, which
is conventionally taken as the pseudogap [14, 15, 22] onset
temperature, and that the Fermi arc length scales with T/T ∗

above Tc. From (i) it is inferred that (iv) ‘the energy gap is not
directly related to the superconducting order parameter’.
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Figure 21. Fermi arc length as a function of T/T ∗
ex for doping

concentrations from optimal to underdoping for a cuprate
superconductor. Fermi arc length is typically finite above Tc and
drops to zero upon the onset of phase coherence. The normal state
portions of the curves are close to universal, in agreement with [87].
The comparison in the inset between the theory with a slightly
(15%) enlarged T ∗

ex and experimental data (symbols) [86] shows a
good semi-quantitative agreement. (Color online.)

To address these and other photoemission experiments,
the normal state self-energy is taken [44, 78, 79] to be of the
form shown in equation (29) with equation (27) and with
a purely imaginary background self-energy: 	0(k, ω) =
−i�0. Although it is not a necessary assumption, it is widely
assumed [78] that �0 should be same as γ . The rapid, but
smooth destruction of the d-wave point nodes as temperature
is raised can be physically associated with the fact that the
superconducting order parameter �sc disappears smoothly but
precisely at Tc. Above Tc the effects of γ and 	0 lead to a
smearing and the point nodes are replaced by Fermi arcs [78].
Below Tc with the onset of phase coherence through �sc, the
arcs are rapidly replaced by point nodes. One says that there
has been ‘a collapse of the Fermi arcs’, and that the nodes are
‘protected’ below Tc.

The collapse is a continuous process. We argue that it is
not to be associated with a disappearance of the inverse lifetime
γ , but rather it reflects the gradual emergence of the condensate
to which the finite momentum pairs are continuously converted
as T decreases. This is related to the fact that, from
equation (27), we see there are two terms in the self-energy
below Tc. At the lowest temperatures �pg vanishes, whereas
above Tc, it follows that �sc is zero.

In figure 21 we address these new experiments by showing
the collapse of the Fermi arcs from above to below Tc within the
same general BCS–BEC crossover formalism as was used for
the cold gases. We plot the percentage of Fermi arc length as a
function of T/T ∗ and for different doping concentrations from
the optimal (T ∗ ≈ Tc) to the underdoped regime (T ∗ � Tc).
The observed collapse is intimately connected with our earlier
observation that the spectral function in equation (30) has a
zero at ω = −ξk below Tc, whereas the spectral function has
no zero above Tc.
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Figure 22. Contrasting nodal and anti-nodal temperature dependences in the d-wave case. Figure on the left is the ARPES gap as a function
of angle φ at T/Tc = 1.1, 0.99, 0.1 (labeled on the figure). This figure should be compared with the experimental plots on the right taken
from figure 5 in [88]. Reprinted with permission from Macmillan Publishers Ltd: Nature (450 81), copyright (2007).

There has been a recent emphasis on a related class of
experiments which contrasts the behavior around the gap nodes
with that around the gap maxima (or anti-nodes). The right
hand panel of figure 22 indicates the size of the ARPES or
spectral gap as deduced from one-half of the peak to peak
separation in the spectral function. These data [88] address a
moderately underdoped sample. The three different curves
correspond to three different temperatures with the legend
the same as that in the left hand panel (representing the
results of BCS–BEC crossover theory). Importantly, one
sees a pronounced temperature dependence in the behavior
of the ARPES spectral gap for the nodal region (near 45◦), as
compared with the anti-nodal region (near 0 and 90◦), where
there is virtually no T dependence.

Theory (on the left) and experiment (on the right) are
in reasonable agreement and one can readily understand the
contrasting temperature response associated with the different
k points on the Fermi surface. To see this, note that the nodal
regions reflect extended gapless states or Fermi arcs [86] above
Tc. It is natural to expect that they are sensitive to the onset of
�sc, in the same way that a strict BCS superconductor (which
necessarily has a gapless normal state) is acutely sensitive to
the presence of order. By contrast, the anti-nodal points are not
so affected by passing through Tc because they already possess
a substantial pairing gap in the normal phase.

The dramatic variation in the temperature dependence of
the spectral gap as one moves along the Fermi surface has given
rise to the so-called ‘two-gap scenario’ [18]. In (perhaps)
overly simplistic terms the one-gap and two-gap scenarios
are differentiated by the presumption that in the former the
pseudogap represents a precursor to superconductivity, while
in the latter the mysterious cuprate pseudogap is viewed as
arising from a competing order parameter. The two-gap
scenario is viewed as a consequence of a number of different
experiments [18, 89] all of which have been interpreted to
suggest that the anti-nodal region is associated with this
alternative (hidden) order parameter pseudogap and the nodal
region is dominated by superconductivity. By contrast, the
viewpoint expressed here (based on BCS–BEC crossover
theory) leads naturally to a differentT dependence for the nodal
and anti-nodal region, but at the same time it belongs to the

class of theories which argue that the pseudogap is intimately
connected with the superconductivity.

We believe that the reasonable agreement between theory
and experiment shown in these last two plots supports
our physical picture that pseudogap effects derive from the
superconductivity itself and are a consequence of a stronger-
than-BCS attractive interaction. There are ‘two-gap’ like
features which are present in the ARPES or spectral function
temperature dependences. These two-gap components are to
be associated with the non-condensed pair excitations which
are distinguishable from the condensate. The presence of
pseudogap contributions below Tc is a crucial consequence
of BCS–BEC crossover and reflects the fact that pre-formed
pairs above Tc do not abruptly disappear just below Tc.

In summary, with this recent class of photoemission
observations has come a recognition that the superfluid phase in
the cuprates is, itself, very complex and has to be distinguished
from a simple BCS d-wave superconductor. At the very
least an important difference between the cuprates and strict
BCS theory is the presence of a large excitation gap at
the temperature of condensation. We also reiterate that
this purportedly more complex superfluid, containing non-
condensed pair excitations, can potentially be elucidated
through studies of BCS–BEC crossover in the cold Fermi
gases.

8. Conclusions

There has been enormous progress in the field of radio
frequency (RF) spectroscopy of the Fermi gases. This
technique holds promise of being as valuable to these atomic
superfluids as photoemission has been to the cuprates. We
have tried in this review to argue that it also holds promise
of helping to address some fundamental issues in the cuprates
which are very general, such as how to describe that anomalous
superfluid phase which forms in the presence of a normal state
excitation gap.

On a less general level, these RF experiments also hold
promise of helping to address (that is, support or rule out)
one particular approach to the theory of high temperature
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superconductivity: namely that based on BCS–BEC crossover.
There are many alternative physical pictures of the cuprates
and, indeed, the ultracold gases on optical lattices have
presented themselves as possible simulators of at least some of
these alternatives. Most notable among these are the proposed
cold gas studies of the repulsive Hubbard model which is
thought to be relevant to the ‘Mott physics’ aspects of the high
Tc superconductors.

A goal of this review was to present a broad background to
the theory of RF spectroscopy and its relation to photoemission
spectroscopy. We summarize key experiments using both
techniques and show how they can be addressed within a
BCS–BEC crossover approach. Included in our analysis
are trapped as well as homogeneous gases and population
imbalanced gases. The RF field has seen a proliferation
of methodologies including tomographic and momentum
resolved scans, all of which are discussed here.

The immediate excitement surrounding these RF
experiments is in large part because they hold the potential
for measuring the pairing gap �. As time passes, however, it
has become progressively more clear that extracting detailed
quantitative information is increasingly difficult. There is
no signature in the RF spectra of � except to establish
whether it is present or not. This observation applies to
both balanced and imbalanced gases. Here we summarized
three methodologies which might make it possible to extract
more precise numerical values for �: either through sum rules
which involve integrals of the measured RF spectra, through
recent momentum resolved experiments or by the use of
imbalanced gases. The first and the third of these make further
use of enhancing the negative detuning continuum either by
imbalance or by final state effects. At this moment, only the
last of these has been put into experimental practice [64] at a
quantitative level.

Our analyses (and all results presented in this paper)
are subject to the caveat that they are obtained within the
BCS-Leggett crossover theory (extended to finite T ). This
theory, like all others is not an exact theory. However, this
approach to the crossover is one which is particularly well
suited to the cuprates because there are no spurious first order
transitions. Recently, there have been RF calculations based on
an alternative scheme [50, 54] which is closer to the Nozieres–
Schmitt-Rink approach to BCS–BEC crossover. This is very
nice work, which we have only briefly mentioned, which
addresses radio frequency experiments in the normal state and
at T ≈ 0. The latter, in particular, has been important in
elucidating how to incorporate final state effects. We also only
make passing reference to the body of work on the highly
imbalanced gases.

It should be clear that this field is moving rapidly and much
has been accomplished at the theoretical and experimental
ends. However, in writing this review, we felt it was timely
to suggest possible new directions for cold gas research which
might elucidate the cuprate superconductors. As summarized
earlier, the key issues which have emerged in photoemission
studies involve characterization of the fermionic self-energy,
of the pseudogap and of the signatures of superconducting
coherence (in passing from above to below Tc). These
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Figure 23. RF current of the unitary polarized (δ = 0.1) gas at
T = 0.15TF and T = 0.25TF. For these temperatures, the Sarma
state is stable. The (black) solid curve is for the majority and (red)
dashed is for the minority. The arrows indicate the position of −�.
Tc ≈ 0.24TF in this case.

issues have a counterpart in the ultracold Fermi gases as we
have suggested here and it will be of enormous benefit in
future to exploit this new class of ‘materials’ to address these
fundamental questions in condensed matter.
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Appendix A. Analytical results for RF spectra in
homogeneous, polarized gas

Following the same arguments as in section 3.5, for the
polarized case, we have for the majority current

I
(1)
0 (ν) = 1

8π2

�2

ν2
k0[1 − f (E0 + h)], (ν > ν1), (A1)

I
(1)
0 (ν) = 1

8π2

�2

ν2
k0f (E0 − h), (ν2 < ν < 0) (A2)

and the minority RF current

I
(2)
0 (ν) = 1

8π2

�2

ν2
k0[1 − f (E0 − h)], (ν > ν1), (A3)

I
(2)
0 (ν) = 1

8π2

�2

ν2
k0f (E0 + h), (ν2 < ν < 0). (A4)

Here µ = (µ↑ + µ↓)/2 is the average chemical potential and
h = µ↑−µ↓ is the chemical potential difference. Since E0 + h

is always positive, the minority RF current is not associated
with a negative continuum at low temperatures. On the other
hand, since generally E0 − h < 0, the majority RF current
has a negative continuum. For strictly zero temperature, the
negative continuum is located in the range −h−√

h2 − �2 <

ν < −h+
√

h2 − �2. In figure 23, we show the RF current for
the stable Sarma state for small population imbalance δ = 0.1.
We note that the negative peak location is not at −�.
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Figure 24. RF current of the unitary unpolarized gas at T = 0.15TF

and T = 0.25TF. Tc = 0.255TF in this case. This figure is included
as a contrast to the polarized case, to make it evident that the
negative continuum is more difficult to see in the absence of
polarization.

In figure 24 we compare with the unpolarized case,
showing that there is essentially no negative continuum (until
one approaches temperatures closer to Tc). We can ask why
the onset of the negative continuum is unrelated to the energy
scale �. The answer is that while the negative continuum in the
Sarma phase is associated with the presence of excess fermions
(as seen by comparing the two figures in this appendix), these
excess fermions in the Sarma phase are essentially gapless.
Thus, they are not directly associated with an energy scale
which involves � in any explicit way.

Appendix B. Details on the final state effect diagrams

The response function which yields the RF current is

D(ν) = D0(ν) + D2
2(ν) t13(ν), (B1)

where the first term is the usual leading order contribution
and the second corresponds to the Aslamazov–Larkin (AL)
diagram given by

DAL(Q) = −
∑

K,K ′,P

G(2)(K)G
(1)
0 (−K)G

(3)
0 (K + Q)

× t12(P )G(2)(K ′)G(1)
0 (−K ′)G(3)

0 (K ′ + Q)t13(Q)

=
[
�

∑
K

G(K)G0(−K)G
(3)
0 (K + Q)

]2

t13(Q),

(B2)

where, as discussed in the text, we have t12(Q) ≈
−�2δ(Q)/T . This term can be rewritten in terms of the
functions F(Q) and D2(Q) defined in the main text. We
introduce the RF detuning frequency ν:

i� → � + i0+ = ν + µ2 − µ3 + i0+. (B3)

The retarded form of the various complex functions which
enter into the RF current can be summarized as

DR
0 (ν) =

∑
k

[
f (Ek) − f (ξk,3)

ν + Ek − ξk + i0+
u2

k

+
1 − f (Ek) − f (ξk,3)

ν − Ek − ξk + i0+
v2

k

]
, (B4)

DR
2 (ν) =

∑
k

�

2Ek

[
1 − f (Ek) − f (ξk,3)

ν − Ek − ξk + i0+

− f (Ek) − f (ξk,3)

ν + Ek − ξk + i0+

]
, (B5)

χR
13(ν) = −

∑
k

[
1 − f (Ek) − f (ξk,3)

ν − Ek − ξk + i0+
u2

k

+
f (Ek) − f (ξk,3)

ν + Ek − ξk + i0+
v2

k +
1

2εk

]
. (B6)

To compute the RF current, we calculate the real and
imaginary parts of the above quantities. For later convenience,
we introduce the following expressions:

B(ν)

=
∑

k

1

2Ek

[1 − f (Ek) − f (ξk,3)

ν − Ek − ξk

− f (Ek) − f (ξk,3)

ν + Ek − ξk

]
,

(B7)

C(ν)

= −π
∑

k

1

2Ek

{[1 − f (Ek) − f (ξk,3)]δ(ν − Ek − ξk)

− [f (Ek) − f (ξk,3)]δ(ν + Ek − ξk)}. (B8)

We also define B(ν = 0) ≡ B(0) and C(ν = 0) ≡ C(0). For
the most part it will be convenient to drop the argument and
simply write B, C.

It can be shown that

ImDR
0 = �2

ν
C, (B9)

ImDR
2 = �C, (B10)

ReDR
2 = �B. (B11)

We notice that

χ13(ν) − χ13(0)

= −ν
∑

k

1

2Ek

[
1 − f (Ek) − f (ξk,3)

ν − Ek − ξk

− f (Ek) − f (ξk,3)

ν + Ek − ξk

]
= −Bν. (B12)

We make use of the 1, 2 superfluid gap equation and identify
χ12(0) = χ13(0), so that

Re t
−1,R
13 = m

4πa13
− m

4πa12
+ χ13(ν) − χ13(0)

= m

4πa13
− m

4πa12
− Bν, (B13)

Im t
−1,R
13 = Im[χR

13(ν) − χ13(0)] = −Cν − B 0+. (B14)

In the general case with a12 �= a13, it follows that

Im DR(ν) = Im DR
0

+
−Re (DR

2 )2Im t
−1,R
13 + Im (DR

2 )2 Re t
−1,R
13

(Re t
−1,R
13 )2 + (Im t

−1,R
13 )2

.
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After a straightforward calculation we have

Numerator = �2

ν
C

(
m

4πa13
− m

4πa12

)2

. (B15)

In this way we rewrite the response function in the form
presented in the text as

Im DR(ν) =
(

m

4πa13
− m

4πa12

)2 Im DR
0 (ν)

|t−1,R
13 (ν)|2 . (B16)

Appendix C. Special case of equal interactions

In the special case a12 = a13, we expect I (ν) ∝ δ(ν). We
showed above that Im t

−1,R
13 = −Cν − B 0+. The second

term plays essentially no role in the a12 �= a13 case, but it
is important in this special case. Combined with the real part,
we have

tR
13 = − 1

(B + iC)ν + iB 0+
. (C1)

Using the fact that C = 0 (when a12 = a13), we find

Re t13 = −1

ν

B

B2 + C2
, (C2)

Im t13 = 1

ν

C

B2 + C2
+

π

B
δ(ν). (C3)

Thus we have

Im DR(ν) = Im DR
0 (ν) + Re D2

2 Im tR
13 + Im D

2,R
2 Re tR

13

= π�2B δ(ν). (C4)

In the limit a12 = a13

�2B(0) = −
∑

k

{[1 − f (Ek) − f (ξk,3)]v
2
k

+ [f (Ek) − f (ξk,3)]u
2
k} = −(n2 − n3). (C5)

Thus we deduce

I (ν) = − 1

π
Im DR(ν) = (n2 − n3)δ(ν), (C6)

which is the expected [47] result.

Appendix D. Details on explicit evaluation of sum
rules

We will next prove the sum rules on the zeroth and first
moment of the RF spectra for the unpolarized case. We
focus on the general case a12 �= a13. In the large ν limit,
from equations (B7) and (B8) it follows that B ∼ ν−1/2 and
C ∼ ν−1/2. Thus we have χ13(ν) = χ13(0) − Bν ∼ ν1/2 as
ν → ∞. We deduce t13(ν) = [1/g13 + χ13(ν)]−1 ∼ ν−1/2.
Thus we have I0 ∼ ν−3/2 and I ∼ ν−5/2 as ν → ∞.
Consequently, we see that final state effects convert a diverging
first moment into a finite result for the clock shift.

To obtain this shift quantitatively, we use the Kramers–
Kronig relations for t13.

Re tR
13(ν) = −

∫ +∞

−∞

dν ′

π

Im tR
13(ν

′)
ν − ν ′ . (D1)

For convenience we define δg = m
4πa13

− m
4πa12

so that

Re tR
13(ν) = δg − Bν

(δg − Bν)2 + (Cν)2
.

Then from the Kramers–Kronig relations with ν = 0 we have∫ +∞

−∞

dν ′

π

Im tR
13(ν

′)
ν ′ = Re tR

13(0) = δg−1. (D2)

We also have by taking a derivative and setting ν = 0,∫ +∞

−∞

dν ′

π

Im tR
13(ν

′)
ν ′2 = ∂

∂ν
Re tR

13(0) = B(0)/δg2. (D3)

From these results we can prove the sum rule:∫
dνI (ν) = − δg2�2

∫
dν

π

Im tR
13(ν)

ν2

= − B(0)�2 = n2 − n3. (D4)

Then the first moment is∫
dν νI (ν) = − δg2�2

∫
dν

π

Im tR
13(ν)

ν2

= − δg�2 = �2 m

4π

(
1

a12
− 1

a13

)
. (D5)

Combining these equations we find for the mean clock
shift

ν̄ =
∫

dν νI (ν)∫
dν I (ν)

= �2

n2 − n3

m

4π

(
1

a12
− 1

a13

)
, (D6)

which is the expected result [47]. In the text we explore how
this sum rule may be used to measure the pairing gap.

Appendix E. Final state effects in a homogeneous
but polarized system

In the polarized case, states 1 and 2 have different chemical
potentials. All the calculations will closely parallel the
unpolarized case. In the following, we only consider the RF
transition from state 2 to 3. The formulae for the transition
from state 1 to 3 can be similarly derived. As before, we
define

F ′(K) = − �G(2)(K)G
(1)
0 (−K)

= − �
1

iω − ξk − h

−iω + ξk + h

(iω − h)2 − E2
k

= �

(iω − h)2 − E2
k

. (E1)

Here µ = (µ↑ + µ↓)/2 and h = (µ↑ − µ↓)/2.
Generalizing D2(Q) to the polarized case we find

D′
2(Q) =

∑
k

�

2Ek

[
1 − f (Ek,↑) − f (ξk,3)

(i� + h) − Ek − ξk,3

− f (Ek,↓) − f (ξk,3)

(i� + h) + Ek − ξk,3

]

with Ek,↑ = Ek − h and Ek,↓ = Ek + h.
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We analytically continue along with a shift of variables to
write

i� → � + i0+ = ν + µ2 − µ3 + i0+. (E2)

In this way we find the denominator in D2(Q) is the same as for
the unpolarized case; the only difference is in the numerator.

1 − f (Ek) − f (ξk,3) → 1 − f (Ek,↑) − f (ξk,3),

f (Ek) − f (ξk,3) → f (Ek,↓) − f (ξk,3).

We can similarly evaluate D0(ν) and χ13(ν). Finally, we
note that

Im D′R
0 = �2

ν
C2, (E3)

Re t ′−1,R
13 = m

4πa13
− m

4πa12
− B2ν, (E4)

Imt ′−1,R
13 = −C2ν (E5)

with

B2(ν)
∑

k

1

2Ek

[
1 − f (Ek,↑) − f (ξk,3)

ν − Ek − ξk

− f (Ek,↓) − f (ξk,3)

ν + Ek − ξk

]
,

C2(ν)

= −π
∑

k

1

2Ek

{[1 − f (Ek,↑) − f (ξk,3)]δ(ν − Ek − ξk)

− [f (Ek,↓) − f (ξk,3)]δ(ν + Ek − ξk)}.
In this way we find for the RF current of state 2

I2(ν) = − 1

π

(
m

4πa13
− m

4πa12

)2 ImD′R
0 (ν)

|t ′−1,R
13 (ν)|2 ,

which is formally the same result we found in the absence of
population imbalance. These results can readily be generalized
to compute the current in state 1.

Appendix E.1. Sum rules for the polarized case

Just as for the unpolarized case, we have the Kramers–Kronig
relations (D1) for tR

13. Following the same analysis as for the
unpolarized case we have

∫ +∞

−∞

dν ′

π

Im t ′R13(ν
′)

ν ′ = 1/δg,

∫ +∞

−∞

dν ′

π

Im t ′R13(ν
′)

ν ′2 = B2(0)/δg2.

Now using the fact that �2B2(0) = −(n2 − n3), it is
straightforward to obtain the zeroth and first moment of the
RF current: ∫

dνI2(ν) = n2 − n3,∫
dνν I2(ν) = −δg�2.

Then the average clock shift is

ν̄ =
∫

dν νI2(ν)∫
dν I2(ν)

= �2

n2 − n3

m

4π

(
1

a12
− 1

a13

)
.

Again, this is, formally, the same as for the unpolarized case.
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