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ABSTRACT

In this thesis we explore forced crumpling of a thin elastic membrane� As

in many problems that involve bending of elastic plates and shells� the limit of the

vanishing membrane thickness leads to a boundary layer phenomenon� We argue that

the structure of a crumpled sheet in that limit is simple� It consists of a collection

of �at facets that are bounded by straight edges that in turn meet at sharp vertices�

These edges become in�nitely sharp in the small thickness limit� A boundary layer

solution in the ridge region determines the details of how the singular limit of a sharp

crease is approached� Most of the elastic energy is con�ned into the ridges� A scaling

law allows one to estimate the energy of a ridge given only its length and dihedral

angle� Thus� if for a given compression factor� a crumpled sheet can be characterized

in terms of the underlying ridge network� on can estimate its elastic energy and

therefore its resistance to further compression�

vii



CHAPTER �

INTRODUCTION

Mechanical properties of thin elastic membranes are of great scienti�c and

practical importance� Systems that can be described in the framework of membrane

elasticity span a wide range of scales� Post�buckling properties of macroscopic plates

and shells are important in engineering of thin�walled structures� Behavior immedi�

ately following a structural failure is relevant to safety engineering ���� Understanding

of the mechanical properties of collapsed or crumpled sheets can be useful in designing

materials with favorable cushioning properties ����

On the microscopic scale� many biological lipid�bilayer membranes behave

as elastic plates if the lipid bilayer is reinforced somehow to resist shear deformations�

The cyto�skeleton of a red blood cell membrane serves such a purpose ���� In vitro

lipid bilayers behave as solid membranes below the two dimensional 	�D
 freezing

point or when polymerized ���� Mechanical properties of these lipid membranes may

be important in understanding such processes as passage of red blood cells through

capillaries� cell division and usage of lipid vesicles for drug delivery ����

Some inorganic compounds appear in the of form large monomolecular sheets

that behave elastically on length scales large compared to interatomic spacing� Ex�

amples include molybdenum disulphite �
� and graphite oxide ���� The conformation

of these membranes in solution can be manipulated by changing such properties of

the solvent� Changing the pH of the solution in�uences the van der Vaals attraction

of the distant parts of the sheets and thus leads to a transition from a crumpled to a

�at phase�

Mechanical and statistical properties of elastic membranes are a subject of

great current interest ���� Several types of distortion have been recently analyzed�

Linear stability and the onset of buckling of thin�walled structures is understood in

�



�

great detail� For an exhaustive work on buckling of cylindrical shells see for example

Yamaki ���� Thermal �uctuations roughen the membrane but do not destroy its

�atness� i�e� the normal�normal correlation function approaches a constant at large

separations� If certain defects are introduced into the membrane via the boundary� it

looses its global �atness ��	�� Energy associated with such defects is well understood

�����

A separate class of problems that involve deformations of thin elastic mem�

branes focuses on obtaining general results about behavior of shells in the small

thickness limit� This particular question has no counterpart in problems that involve

deformation of bulk objects� Several speci
c weak distortions of thin plates and shells

have been analyzed in terms of their behavior in the limit of the vanishing shell thick�

ness ���� ��� ���� A common feature that emerges from these studies is that boundary

layers of di
erent �avors arise in a wide variety of situations� Membrane stresses

are con
ned to these boundary layers whose width vanishes as some power of the

shell thickness� We are interested in a complimentary regime of strong distortion of

a membrane that is collapsed� or crumpled by external forces� We would like to es�

tablish the details of the structure of a crumpled membrane� In particular� formation

of boundary layers in the limit of small thickness is anticipated� Scaling properties of

these singularities must be understood and contrasted with other types of boundary

layers in bending of thin plates and shells� Once the formation of the boundary layers

is understood� one is able to make far�reaching predictions of the structure and the

mechanical properties of a crumpled membrane since the distortions are con
ned to

boundary layers in which the scaling properties of the elastic stresses are known�

It is important to understand the origin of such con
nement� A variety of

problems in other 
elds of physics exhibit similar con
nement� There are several

di
erent types of situations� On the one hand� when some systems are strongly per�

turbed so that their linear response properties no longer describe their behavior� the

perturbing energy is sometimes focused or con
ned to a small subset of the system�

Examples include dielectric breakdown ����� crack formation in brittle fracture �����

formation of 
brils in stretching ���� and cracking of polymers ����� magnetic �ux



�

vortices in type II superconductors ����� or pattern formation in hydrodynamic �ows�

solidi�cation dynamics� and biological systems ��	�
 In other systems� a certain �eld

is con�ned to a small subset of the available con�guration space even in the ground

or metastable state of the system
 Examples include the Prandtl�s boundary layer

in high Reynolds number �ows ����� organization of defects into grain boundaries in

polycrystalline materials ����� rare�earth dopant distribution in creep�resistant alu�

mina ceramics ����� force chains in granular packs ��
�� con�nement of color gauge

�elds in quantum chromo�dynamics ����� or compacti�cation of space dimensions in

superstring theories ����


In Chapter one of the thesis� we trace the development of the equations

that describe large de�ections of thin plates and give a simple derivation of the von

K�arm�an equations of a plate
 A review of various boundary layer phenomena that

arise in bending of thin plates and shells is presented
 In some of these phenomena

the shell equations break down in some region of the distorted shell so that the full

three dimensional elasticity equations must be used to properly capture the behavior

of the shell in that region
 One then must determine the correct e�ective boundary

conditions for the rest of the shell
 We are not interested in boundary layers of

that sort since they are highly dependent on the details of the deformation
 In other

cases� however� the two dimensional ��D� plate or shell equations can� in fact� properly

account for the rapid change of the stresses in the boundary layer
 In that case� a

boundary layer analysis of the thin shell equations produces the asymptotic scaling

properties of the boundary layer in the limit of the vanishing shell thickness
 We

argue in the concluding section of Chapter � that a crumpled sheet exhibits boundary

layers of the two types
 First� there are sharp points of high curvature that must be

described within the full three dimensional elasticity since the strains in these regions

are of order unity
 Second� these sharp points are connected by straight sharp ridges

whose properties can� in fact� be accounted for by the von K�arm�an plate equations


In the third Chapter we present the boundary layer analysis of the straight

ridge singularity within a simple strip geometry
 Singular boundary conditions are

required in order for the ridge singularity to develop
 A number of the scaling proper�



�

ties of the ridge turn out to be independent of the details of the boundary conditions�

They are a function of a few geometric attributes of the ridge such as its length and

dihedral angle� These include the scaling of the characteristic ridge width with the

thickness of the plate and with the dihedral angle of the ridge� The shape of the ridge

midline is also independent of the detail of the boundary conditions once the verti�

cal displacement of the center of the ridge is speci�ed� Other asymptotic properties

of the ridge singularity such as the transverse ridge shape and the coe�cients in the

thickness scaling laws are dependent on the detailed form of the boundary conditions�

such as the externally imposed compressive stress� for example�



CHAPTER �

THIN SHELL EQUATIONS AND BOUNDARY

LAYER PHENOMENA

���� Derivation of the von K�arm�an Plate Equations

Despite the fact that equations describing large de�ections of thin plates

were written down by F�oppl in ���� ���� and put on a 	rmer ground by von K
arm
an

���� three years later� much analytical work has been done since ���� 
�� 
�� to establish

the degree of their accuracy and clarify limits of their applicability� Deformation of a

bulk three dimensional body is described fully by a rank two symmetric stress tensor

that is a function of the material coordinates� Thin shell equations are obtained in

an attempt to reduce the number spatial variables in the problem by introducing

moments of the stress tensor with respect to the integration over the shell thickness�

The hope is that one can keep only a small number of these moments since higher

moments will be of higher order in some small expansion parameter because the

stresses do not vary signi	cantly throughout the thickness of the shell� Rigorous

analyses of this sort performed in various contexts can be found for example in Refs�

���� and �
���

These analyses indicate that when the strains are small and the radii of

curvature of the middle surface are large compared to the thickness of the plate�

	rst� the shell can be treated as a two dimensional object� and second� there is a

hierarchy of equations for the moments of the stress tensor� Each successive level in

that hierarchy is of higher order in some small parameter that has to be de	ned in

each situation separately� In our case this parameter is the upper bound on the strain

in the sheet� At zeroth order one obtains the well�known von K
arm
an equations for

large de�ections of thin plates� Here we reproduce a less rigorous derivation of these

equations� Our derivation closely follows that of Ref� �
�� with the exception of the

�
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way in which we introduce the curvature potential f � We will point out the conditions

that are necessary and su�cient in many practical situations to ensure the validity of

the von K�arm�an equations� Note that this derivation can be generalized to describe

shells that have a preferred curvature in the unstressed state� For a derivation see for

example Ref� �����

The two von K�arm�an equations have di�erent origins� Let us begin with the

derivation of the von K�arm�an equation that has a purely geometric origin� Let the

points in the middle surface of the plate be labeled by x� with � � 	� 
� Then� the

three dimensional conformation of the distorted membrane is given by �r�x�
 � R
��

The �rst and second fundamental forms better known as the metric tensor g�� and

the curvature tensor C�� given by

g�� � ����r
 � ����r
 �
�	


C�� � �n � ������r
� �
�



are the objects that are closely related to the stresses in the shell� To clarify the

meaning of these tensors we �rst note that the strain tensor ��� is de�ned as the

deviation of the metric tensor from the identity

g�� � ��� � 
���� �
��


The sum of the eigenvalues of the strain tensor �� � �� is the �
D
 expansion �or

compression
 factor and their di�erence is the shear angle ����� The eigenvalues of

the curvature tensor C� and C�� on the other hand� are the inverses of the two principal

radii of curvature of the surface� To be absolutely rigorous one must distinguish upper

and lower indices� but since we de�ne all quantities to �rst nontrivial order in the

strain ��� and raising and lowering of the indices is accomplished by applying the

metric tensor g��� raising and lowering indices only a�ects higher order terms in ����

In order for the tensors g�� and C�� to de�ne a surface they must satisfy

two relations involving the Christo�el symbols ���� ���� which are de�ned in terms

of the metric tensor� When the strains are small the expression is particularly simple�

���� � ������ � ����� � ������ �
��




�

The �rst relation which g�� and C�� must satisfy in order to de�ne a surface is Gauss�s

Theorema Egregium ����� It expresses the Gaussian curvature K � det C�� which is

the determinant of the curvature tensor in terms of the Christo	el symbols� In the

case of small and slowly varying strain 
i�e� ��� � 
����� Gauss�s theorem reads

K � ������ � ������ 
 �������� � ��������

� ������� �r
����� 
����

where r� � ����� Summation over repeated indices is implied� Geometrically� the

Gauss�s equation captures the intuitive notion that non�zero Gaussian curvature 
the

sheet curves in both directions� must cause the sheet to strain� For historical reasons

Eq� 
���� in this context is usually referred to as the second von K�arm�an equation�

The other set of relations usually termed as Codazzi�Mainardi equations

describes how the curvature tensor behaves when transported around a closed curve�

Again� when the strains and consequently the Christo	el symbols are small these

relations are simple� They say that if the curvature tensor is parallel transported

around a closed curve� the change is of higher order in the strain ����

��C�� � ��C��� 
����

These equations are a tensor analogy of the condition satis�ed by an irrotational

vector �eld� And just as an irrotational vector �eld can be written as a gradient of a

scalar� there exists a scalar function f such that

C�� � ����f� 
����

Equations Eq� 
���� and 
���� ensure that C�� and ��� describe a physical

surface� We now consider further conditions which assure that each element of the

surface is in mechanical equilibrium� The forces and the torques acting on an in�nites�

imal element of the surface �x�y from the rest of the plate can be found from the full

three�dimensional stress tensor ��ij where i� j � �� �� � 
quantities without a hat will

denote the moments of ��ij with respect to the integration over the plate thickness��

This is where the expansion in the thickness as a small parameter takes place� If there
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Figure �� In�plane stresses �per unit length� acting on a small element of an elastic

sheet obtained by integration of the three dimensional stress tensor over the thickness

of the plate�

are no distributed external forces acting on the plate� the normal components of the

stress tensor ��ij�x� y� z� in the bent plate vanish on the top and bottom surfaces so

that ��iz � 	 at z � �h�
� Here z � ��h�
� h�
� where h is the thickness of the plate

is the coordinate perpendicular to the middle surface� Therefore� these components

of the stress tensor are in some sense of higher order in the thickness as compared

to the in�plane components ���� ��� � � �� 
�� According to the rigorous derivations

cited above� only the following moments of ��ij are required to correctly capture the

lowest order behavior of the bent plate� The in�plane stresses

����x� y� �
Z h��

�h��
dz �����x� y� z�� �
���
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Figure �� Normal shear stresses acting over the sides of the elementary area of the

sheet�

are the forces on sides of the element �x�y acting normal to the cross section of the

plate as shown in Fig� �� The normal shear stresses

Q��x� y� �
Z h��

�h��
dz ���z�x� y� z�� �����

act over the sides of the element �x�y in the direction normal to the plate as shown

in Fig� �� These forces are of higher order in the small expansion parameter since ���z

must vanish at z � �h��� The �rst moments of the in	plane stresses

M���x� y� �
Z h��

�h��
zdz �����x� y� z�� ����
�

are of the same order in the strain as the normal shear stresses Q�� They can be

thought of as torques applied to the sides of the element �x�y as shown in Fig� ��

Starting from a linear constitutive relation between the three dimensional stresses

and three dimensional strains one can show ���
 that the two dimensional in	plane

stresses ��� and torques M�� are also linearly related to the two dimensional strains

��� and curvatures C�� respectively via

��� �
Y h

�� ��
���� � ���������� 
 ������

M�� � � �C�� � �������C�� 
 � ������
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Figure �� Bending and twisting torques per unit length acting on the element of

the plate are �rst moments of the three dimensional stress tensor with respect to

integration over the plate thickness�

where Y is the Young�s modulus and � is the Poisson ratio of the elastic material�

� � Y h������� � ��		 is called the bending rigidity of the plate 
���� Here ��� is the

two dimensional antisymmetric tensor�

The net force and torque on an element of the plate must vanish� The

in
plane force balance gives to lowest nontrivial order in the strains

����� � �� �����	

We ignore higher order contributions� such as the in
plane components of the normal

shear stresses Q� which are non
zero due to the curvature of the element �x�y� Eq�

�����	 allows one to write the stresses in terms of a scalar potential ��x	 y	 traditionally

called the Airy force function�

��� � ������������ �����	

This relation is a tensor analog of the divergenceless vector �eld expressed as a curl

of a vector potential�
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Figure �� A one�dimensional derivation of the normal force on a curved element �l

due to in�plane forces �xx

The balance of torques about the x� and y�axes relates the derivatives of the

M�� to the normal shear stresses Q� via

Q� � ��M��� ������

Higher order contributions to the torques are again ignored�

In absence of distributed external loads	 the resultant normal force on the

element of the plate has two sources� First	 the normal components of the in�plane

tensions that act on the element are non�zero due to the curvature of the surface� It is

easy to become convinced �see Fig� � for a one dimensional version of the derivation�

that that normal force per unit area due to the in�plane tension is ���C�� 
���� Second	

a change in the normal shear stresses Q� results in a net normal force per unit area

of ��Q� � ����M��� A normal force balance is traditionally referred to as the 
rst

von K�arm�an equation

����M�� � ���C��� ������
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The more familiar form of the von K�arm�an equations emerges when one

substitutes the potentials f and � into Eqs� ����� and ������ using the constitutive

relations Eq� ������ and the de�nition of the potentials� They read

�r�f 	 
�� f �
�

Y h
r

�� 	 �
�

�

f� f ��

������

where we have de�ned


a� b� � �����������a������b�

	
��a

�x�
��b

�y�



��a

�y�
��b

�x�
� �

��a

�x�y

��b

�x�y
� ������

Notice that 
f� f � is twice the Gaussian curvature K�

In principle� the strains ��� and the curvatures C�� obtained from the von

K�arm�an equations as a function of the material coordinates de�ne the surface uniquely

�up to a rigid translation and rotation inR��� The problem of �nding the shape of the

surface from the strains and the curvatures is however highly nonlinear and intractable

in general� One can make progress in a limited class of deformations in which the

normal to the surface does not change much� In that case the so called Monge

coordinates are appropriate� The undeformed plate is located in the x � y plane so

that upon deformation the point originally at �x�� x�� �� moves to �x�
u�� x�
u�� w�

in the ��dimensional embedding space where u� and w are functions of x�� If the

derivatives of u� and w are small everywhere� only the lowest non�trivial order terms

in those derivatives can be kept in the expressions for the strains and the curvatures�

We obtain 
���

��� 	
�

�
���u� 
 ��u� 
 ��w��w� ������

and

C�� 	 ����w� ������

It is clear that the normal displacement w in this case is precisely the potential

function f de�ned in Eq� ������
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To complete the description of the deformation of the thin elastic plate one

needs to be able to calculate the elastic energy stored in the sheet and specify the

boundary conditions on the functions f and �� We begin by considering the work

done on the small element of the surface �x�y by the surrounding parts of the plate

when the strain in the element changes by ����� That work is ��������x�y ����� The

stretching energy Estr in the plate element is found by integrating the strain from � to

its value ��� while keeping in mind that the stresses are proportional to the strains�

which introduces a factor of ���� Thus the total stretching energy in the plate is

given by

Estr �
�

�

Z
dxdy ������� 	����


One can similarly show that the work done by the torques M�� in bending a surface

element is �

�
M��C���x�y so that the total bending energy Ebend in the plate is ����

Ebend �
�

�

Z
dxdy M��C��� 	����


Expressing the strains� stresses� torques and curvatures in terms of the potentials �

and f we get after some algebra

Estr �
�

�Y h

Z
dxdy �tr	�����
�

�
� �	� � �
det	�����
 	����


Ebend �
�

�

Z
dxdy �tr	����f
�

�
� �	� � �
det	����f
� 	����


One can show that the conformation r	x	 y
 of the sheet which is a solution of the von

K
arm
an equations minimizes the elastic energy while satisfying the boundary condi�

tions ����� We note in passing that many derivations of the von K
arm
an equations

	see e� g� Ref� ����
 start with writing down these energies in an add�hoc way and then

taking a variational derivative with respect to the sheet shape�

���� Boundary Layer Phenomena in Thin Plates

and Shells

The von K
arm
an equations for thin shells are sometimes called the �inte�

rior� shell equations owing to the fact� pointed out by Green ����� that in general� not



��

all boundary conditions applied to the boundary edge surface S of the shell� when

translated into the language of the two dimensional objects such as the stresses ���

and torques M��� are compatible with the �interior� shell equations� Ref� ���	 argues

that in such cases one must solve the full three dimensional elasticity equation in a

boundary layer whose size is of the order of the thickness of the shell in order to de


termine the correct boundary conditions for the �interior� shell problem� Boundary

layers of this type with speci�c edge loading conditions were studied by several re


searchers� Kelvin and Tait ���	 found that shear force� twisting moment� and bending

moment combine to give e
ective Kirchho
�s boundary conditions for the �interior�

shell problem�

A characteristic feature of all boundary layers of the type discussed above

is that the solution to the interior shell equations with the e
ective boundary condi


tions exhibit strains of order unity in the boundary layer region thus invalidating the

assumptions under which they were derived� We would like to focus our attention on

a fundamentally di
erent type of boundary layer phenomena in bending of thin plates

and shells� There are situations in which the strains in the boundary layer remain

small or vanish in the asymptotic limit of small shell thickness� This means that the

von K�arm�an equations remain valid throughout the boundary layer region and thus

correctly describe the asymptotic behavior of the stresses� Let us brie�y discuss two

such boundary layers�

Fung and Wittrick ���	 discuss a boundary layer in bending and twisting of

thin plates with free edges� They �nd that in the limit of small thickness� the shape

of the bent plate is a piece of a cylinder �with Gaussian curvature identically zero�

except in a narrow region of size � �
p
hX near the edge� Here h is the thickness of

the plate and X is its size� Outside the boundary layer region the shape of the plate

can be determined by neglecting the bending rigidity altogether� This translates

to omitting a term in the von K�arm�an equations� To see why that is true let us

non
dimensionalize the von K�arm�an equations by de�ning

�� �
�

�
� �f �

f

X
� �x �

x

X
and �y �

y

X
������
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Figure �� A ring ridge forms when a part of a spherical shell snaps through�

to obtain
r� �f � ���� �f �

��r��� � ��

�
� �f� �f ��

����	


Here X is some characteristic length that describes the domain of the material coor�

dinates or the geometry of the boundary conditions� The small parameter

� �
q
��Y h

X
�

�
h

X

�
�q

���� � ��

�����


is proportional to the the dimensionless thickness of the plate� The membrane ap�

proximation
 usually employed in the small thickness limit ���� starts with �nding

a solution of the reduced equations with � � � that in general cannot satisfy the

imposed boundary conditions� The boundary layer solution to the full von K�arm�an

equations near the edge that matches onto the solution of the reduced equations is

then sought to satisfy the boundary conditions�

Another boundary layer
 that can be successfully described by the thin shell

equations alone
 occurs in axisymmetric buckling of a spherical shell ����� When

a large portion of the spherical shell snaps through
 the solution to the reduced

equations with bending rigidity set to zero is discontinuous along the ring edge as

shown on Fig� �� A boundary layer is therefore needed to correct the discontinuity

at the sharp edge
 i�e� to properly match the reduced solutions in the snap�through

region and the rest of the sphere� The width of that boundary layer scales as
p
hR

where R is the radius of the sphere� The strains in the boundary layer again vanish
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in the asymptotic limit of the small shell thickness thus allowing for a complete

description with the thin shell equations�

���� Boundary Layers in a Crumpled Sheet

One of the approximate methods of dealing with the formidable complexity

of the thin shell equations� that is applicable to very thin shells� is the membrane

approximation� As noted above� in this method� the bending rigidity is set identically

to zero� or equivalently� the �D stretching modulus of the plate is considered in�nite�

Such a plate cannot stretch and must therefore be isometric to a plane� In other words�

at each point of the surface� one the principle radii of curvature has to be in�nite�

Another way of seeing this is to go back to the reduced von K�arm�an equations ������

with � 	 
� It is clear that the second equation simply states that the Gaussian

curvature �

�
�f� f � is identically zero� In di
erential geometry such surfaces are termed

developable because there exists a set of the so�called generators�straight lines that

lie in the surface�

It is possible to prove though� that a surface continuously embedded into

a ball of a small enough radius cannot be developable ����� Therefore� when a thin

sheet is collapsed into a small ball� in the limit of the vanishing thickness� it assumes a

piece�wise developable� or applicable shape� Therefore there are sharp creases where

the developable pieces meet� These sharp creases converge at sharp points� Point

singularities of this type were shown to arise in elastic plates in the limit of small

thickness under quite general conditions ��
�� A mechanism for the formation of

these sharp point singularities has also been suggested in Ref� ����� Just as in the

case of a buckled sphere� discontinuities �sharp creases� in a reduced solution �with

bending rigidity set to zero� are corrected by boundary layers� To determine the

nature of these boundary layers� one must understand their geometry and e
ective

boundary conditions that are responsible for their creation� Geometrically� there are

few restrictions on the shape of the developable pieces and the creases at which they

meet� The fact that the shape of a crumpled membrane is a minimizer of the elastic
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energy functional� however� is likely to impose signi�cant restrictions on the shape of

the facets and creases in the limit of small plate thickness�

One of the asymptotic properties of these boundary layers is the amount

of elastic energy in the region of the ridge� Presumably� the scaling of this energy

with the dimensionless thickness � di�ers for di�erent types of ridges� Therefore�

only the ridge type whose energy is lowest in the limit � � � will be found in a

crumpled elastic sheet� This statement does not imply that a sheet �nds the lowest

energy con�guration� quite the contrary� a crumpled membrane cannot explore all of

its available con�gurations and is thus in a metastable state� However� if one �xes

the degree of crushing �by say �xing the size of the ball into which the sheet has been

con�ned� and then takes the limit �� �� any ridge of a type that has a higher energy

in that asymptotic limit will become unstable to breakup into ridges of the kind that

have the lowest energy�

It is a conjecture that needs rigorous proof but is supported by numerical

simulations 	
��� heuristic arguments� and everyday experience� that only straight

ridges appear in crumpled sheets� It is plausible that the geometry of the crease

determines the asymptotic scaling of its elastic energy� In particular� the limit of the

Gaussian curvature on the crease is the deciding factor� For example� the Gaussian

curvature on the the ring ridge of the buckled sphere described above tends to a

derivative of a delta function� If the crease curve had non
zero torsion in addition to

curvature �the ring ridge has zero torsion� the Gaussian curvature would approach

a delta function� We will see later that in a straight ridge� Gaussian curvature ap


proaches a �nite constant on the ridge� We therefore hypothesize that in the limit

of the vanishing thickness a crumpled sheet consists of �at facets that are bound by

straight ridges that in turn meet at sharp vertices�

Regardless of whether the straight ridges correctly capture the structure of

crumpled sheets� the scaling properties of the straight ridge singularity are of stand


alone scienti�c interest� The mechanism that controls ridges� behavior is similar to

that of many singular phenomena some of which were mentioned above� Understand




��

ing of the ridge singularities in thin elastic shells and plates therefore can provide a

useful tool in studying other phenomena of this kind�



CHAPTER �

BOUNDARY CONDITIONS INDEPENDENT

PROPERTIES OF A STRAIGHT RIDGE

���� An Energy Scaling Argument

The essential ingredient for the formation of the straight ridge is the presence

of the sharp vertices where the curvature is comparable to the inverse thickness of

the plate� Ref� ���� argues that in the limit of small thickness when the surface is

piecewise developable� a straight sharp crease connects these vertices� When the

bending rigidity is taken into account� the crease relaxes to a characteristic radius of

curvature C�� governed by the competition of the bending and the stretching energies

in the region of the ridge�

In order to reproduce the energy scaling argument� that determines the

width of the ridge� let us rewrite the expressions for the elastic energies as

Ebend �
�

�

Z
dS ���C� 	 C�


� 	 �GC�C�
 ����


Estr �
�

�

Z
dS �G��� 	 ��


� 	Gs����
� ����


where� as above� C� are the eigenvalues of the curvature tensor� and �� are the

principal strains� �G is the Gaussian bending rigidity� G � Y h is the �D stretching

modulus� and Gs is the shear modulus� For the purposes of an energy scaling argument

we may ignore the second terms in the expressions for the energies�

The argument of Witten and Li of Ref� ���� assumes that the ridge can be

described by a single parameter such as the characteristic curvature C� The bending

Ebend and stretching Estr energies are then found with the following assumptions

about the nature of the deformation in the h � � limit as illustrated in Fig� 
�

First� the bulk of the elastic energy is con�ned to a region of width C�� around the

ridge midline� Second� the midpoint of the ridge sags in the vertical direction by an

��
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Figure �� The energy scaling argument assumes that all of the energy is con�ned in

a region of width C�� around the ridge midline� that the ridge sags by an amount

comparable to C��� and that the longitudinal strain in the ridge can be found by

assuming that the vertices do not move closer to each other�

amount d � C��� Third� the vertices do not move closer together appreciably� so

that if the length of the ridge� i�e� if the distance between the vertices is X� then the

characteristic longitudinal strain � � �d�X�� � �CX��� exists in the ridge region�

It turns out that the third assumption can be somewhat relaxed� Since� the crucial

link in the scaling argument is the expression for the characteristic strain in terms of

the ridge curvature� the vertices can not move a distance that is qualitatively greater

than X� � C��X��� Numerical simulations con�rm that it is indeed the case� Ref�

�	
� gave further plausibility arguments to support the main assumption of energy

con�nement� We would like to stress that the only features of the ridge singularity

utilized in this energy scaling argument are the existence of sharp vertices and the

fact that the ridge is straight�

Thus� the total stretching energy in the ridge is approximately Estr �

G���X�C� � GC��X��� Similarly� the bending energy is given by the character�

istic ridge curvature C� via Ebend � �C��X�C� � �CX� Since both kinds of energy
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vary as a power of C� they must be comparable when the total energy Ebend�Estr is

minimized� It immediately follows that

C �

�
G

�

����

X����
� h����X���� �����

Ebend � Estr � �

�
X

h

����

� �����

Another important conclusion of the energy scaling argument emerges when

we consider the derivative of the energy with respect to the parameter C� It must

vanish for the value of C at which the minimum total energy is achieved� Since the

energies depend on powers of C we obtain the following statement

dE

dC
	
dEstr

dC
�
dEbend

dC
	
�
Estr � Ebend

C
	 �� ���
�

which leads to a �virial theorem
 for ridges Ebend 	 
Estr� The virial theorem is a

direct consequence of the con�nement of the elastic energy in the ridge assumed by

the scaling argument� In other words� if one examines the bending and the stretching

energy of a crumpled elastic sheet and �nds that one is �ve times the other� the

conclusion to be made is that ridges are well de�ned objects to which the scaling

argument is applicable�

���� Dihedral Angle Scaling

To characterize the geometry of a ridge completely� its dihedral angle ����

in addition to its length X must be speci�ed� From here on we will refer to � as the

�dihedral angle
 even though it is a half of the di�erence of the dihedral angle from

�� Confusion is unlikely to result since this is the only way � is used in this work�

A scaling argument can be constructed to determine the dependence of the

elastic energy� the ridge width� the ridge sag� and the mid�ridge strain on � when

it is small � � �� The ridge curvature decays to zero at a �nite distance from the

ridge� We may� therefore� for the purposes of the scaling argument assume that the

transverse pro�le of the ridge is and arc of a circle of radius C�� that matches onto
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Figure �� For the purposes of the dihedral angle scaling argument� the transverse

ridge pro�le can be assumed to consist of an arc of a circle of radius C��� This allows

one to determine the dependence of the ridge sag and the ridge width on the angle ��

straight �anks as illustrated in Fig� �� Hence� the ridge width is w � C���� The

ridge sag is then d � C�����cos ���� � C����� The characteristic longitudinal ridge

strain as before depends on the sag via � � �d�X�� � �CX������ Proceeding with

the rest of the scaling argument as in the preceding section we obtain the dihedral

angle scaling of the ridge energy E� the ridge curvature C� the ridge sag d� the ridge

width w� and �nally� the longitudinal strain �

E � �

�
h

X

�
����

����

C � X��

�
h

X

�
����

����

d � X

�
h

X

����

����

w � X

�
h

X

����

�����

� �

�
h

X

�
���

�����

�	�
�

These scaling predictions will be later put on a �rmer ground by a boundary layer

analysis of the von K�arm�an plate equations and con�rmed numerically� Remarkably�
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the scaling predictions Eqs� ����� are valid for all dihedral angles � despite the fact

that the scaling derivation relied upon the angle � being small�

���� A Boundary Layer Solution of the von

K�arm�an Equations

������ De�nition of the Boundary Value Problem

The essential idea behind the scaling analysis of the ridge singularity is

that in the asymptotic limit of the vanishing plate thickness� only a few geometric

properties of the singularity� and not the detailed form of the boundary conditions�

determine several quantitative properties such as the scaling exponents in Eq� ������

Therefore� any boundary value problem that exhibits the straight crease singularity

in the small thickness limit must possess the above scaling behavior� In fact� the

following boundary layer analysis does not make explicit use of the detailed form of

the boundary conditions� Only the singularity of ��f��y� at the boundary is used in

Eq� ������

We investigate the following boundary value problem that exhibits the ridge

singularity� Consider a strip described in terms of material coordinates �x� y� �

��X���X���� ������ of uniform thickness h� X made of isotropic homogeneous

elastic material with Young�s modulus Y and Poisson ratio �� Normal forces are

applied to the edge so as to bend the strip by an angle � � �� as shown on Fig�

	� The membrane stresses ��� as well as the torques M�� vanish at the boundary

�except for the singular point y 
 ��� In terms of the potentials f and � it means

that

����f 
 ����� 
 � at x 
 �
X

�
� �����

The condition that the strip is bent translates into specifying the curvature tensor

at the boundary� We assume that the boundary is a geodesic of the surface which

is reasonable in the small strain limit� In the direction along the boundary� the

curvature is zero except for a sharp peak at the origin y 
 � where the strip is bent�
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Figure �� Normal boundary forces have been applied to an in�nite strip of width X

so as to bend it by an angle ��

The width of the bent region must be of the order of the thickness of the plate and

the curvature is of the order of the inverse thickness� It is convenient then to set the

curvature along the boundary to a ��function since the all of the length scales in the

problem are much larger than h� This leads to a particularly simple condition on f

at the boundary

f��X��� y� � �jyj �	���

up to an arbitrary linear function of x��

To see that the coe
cient � is identical to the bending angle introduced

above consider the following integral along the boundary

�f

�y
����

�f

�y
���� �

Z
�

��

dy
��f

�y�
�

Z
�

��

dy

�����
��n

�y

����� � ��� �	���

where we have used the de�nition of the curvature tensor Cyy � �y�n � �ty and the

fact that the integral is taken along a geodesic� Here �n is the unit normal and �ty is

tangent vector to the surface in the y�direction 
	��� The geometric meaning of this

integral is the length of the contour inscribed by the end of the normal vector �n on

the unit sphere as �n is transported along the boundary� It is reasonable to believe
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that the solution far away from the ridge approaches that of an unperturbed �at strip�

Therefore� the derivative of the potential f along the transverse direction y does not

depend on x far away from the ridge� Hence� the integral in Eq� ����� can be taken

along any other geodesic which approaches x 	 const far away from the ridge� This

fact will later allow us to gain insight into the nature of dihedral angle dependence

of the boundary layer solution�

������ Boundary Layer Scaling

The bent strip develops a sharp crease in the limit of the vanishing thickness�

A boundary layer is thus needed to correct this singularity in the reduced solution�

We use a standard treatment of boundary layers described in Ref� 
���� for example�

It involves a rescaling of all variables in Eqs� ����
� by a power of the small parameter

� with the purpose of identifying the most important terms in the boundary layer

region� Let us de�ne

�f 	 ��� �f� �� 	 ��� ��� �x 	 ���x� �y 	 ��� �y� ������

Note that �x remains unchanged by the rescaling transformation and �f and �y are

rescaled by the same factor to satisfy the boundary condition Eq� ������ The rescaled

equations read�

���
�
�� �f

��x�
� ����

�� �f

���x���y
� ���

�� �f

���y

�
	 ���� 
 ��� �f �

����
�
����

��x�
� ����

����

���x���y
� ���

����

���y

�
	 ���

�

�

 �f� �f ��

������

The dominant terms in the � � � limit must be of the same order on either side of

the equations� This leads unambiguously to � � � in agreement with the assumption

that the width of the boundary layer must go to zero as the thickness of the sheet

vanishes� Balance of the dominant terms gives

� 	 �
�

�
and � 	

�

�
� ������
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in agreement with the scaling argument of Witten and Li�

The rescaled equations are independent of � in the �� � limit� Therefore�

the rescaled quantities �f and �� and their derivatives with respect to �x and �y are

�nite in that limit� This fact allows one to obtain the small thickness behavior of

such quantities as� for example� the transverse ridge curvature Cyy � ��f��y� and

the mid�ridge longitudinal strain �xx � 	
�Y �	�xx � ��yy� � 	
�Y ������y� where

the expressions are evaluated at x � � and y � �� The leading order behavior of the

transverse stress �yy � �����x� is of higher order in � and it thus can be ignored in

the expression for �xx� Substituting the rescaled quantities we �nd that

Cyy �



X
�����

�� �f

��y�
and �xx � ����

����

��y�
� 	��
��

These expressions give the asymptotic behavior of Cyy and �xx since the rescaled

quantities do not depend on � in the small � limit� Since the longitudinal ridge

curvature Cxx vanishes as X���� in that limit� Gaussian curvature reaches a constant

on the ridge midline� This result should be contrasted with the singular behavior of

the Gaussian curvature for ridges with other geometries�

Note that the width of the boundary layer w � y � X���� has the same

leading order behavior as the radius of curvature of the plate at the center of the ridge

and as the ridge sag which is the vertical de
ection of the ridge middle from that of a

perfectly sharp crease� This de
ection is given by f	�� �� in the small dihedral angle

limit 	� 
� The sag can be found for a general dihedral angle 	 from the following

argument� Due to the x � �x symmetry of the solution the ridge line y � � is a

geodesic of the surface� Therefore we can relate the vertical de
ection of the sheet

d	x� along the ridge to the curvature Cxx � ��f��x�� To lowest order in the strain

we obtain

d��

q

� 	d���

� Cxx �
��f

�x�
� 	��
��

Since Cxx vanishes in the limit of vanishing thickness� the leading term in the ����

expansion of d��	x� scales with the same power of � as ��f��x�� Thus the ridge sag



��

d��� is of the same order as the ridge width and as the mid�ridge transverse radius of

curvature�

Let us now �nd the asymptotic behavior of the bending and stretching en�

ergies of the sheet� We �rst rewrite the expressions for the energies Eqs� ������ and

����	� in terms of the non�dimensional variables

Ebend 
 �
R
dxdy

�
r

� �f
�
�

����
�

Estr 
 ���
R
dxdy �r����

�
� ������

The terms involving det�����f� and det������� can be expressed as an integral over

the boundary ��	�� These integrals vanish identically for the boundary conditions

considered here� Substituting the rescaled quantities� which remain �nite as � � ��

into Eqs� ����
� and ������ we obtain

Ebend 
 ������
Z
d�xd�y

�
�� �f

��y�

��

������

Estr 
 ������
Z
d�xd�y

�
����

��y�

��

� ������

in agreement with the energy scaling argument of Witten and Li �	��� For a �xed

thickness� these energies grow qualitatively slower �as X���� than the energy of a

sharp crease of size X that grows linearly with X�

������ Separation of Variables Ansatz

The solution to the rescaled equations ������ can be sought as an expansion

in powers of �����
�f 
 f� � ����f� � ����f� � � � �

�� 
 �� � ������ � ������ � � � � �
������
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Plugging the series into Eq� ������ and matching the coe�cients of powers of ���� we

can obtain equations for all orders in the ���� expansion� We get at zeroth order�

��f�
�	y�


 ���� f��

����

�	y�

 �

�

�
�f�� f���

����
�

These equation di�er from the full von K�arm�an equations by the absence of the

dimensionless thickness �� Also� the r� operator is replaced by ����	y� on the left

hand side of the equations� We note in passing the equations for f� and ��� They

read
��f�
�	y�

� �
��f�

�	x��	y�

 ���� f�� � ���� f��

����

�	y�
� �

����

�	x��	y�

 ��f�� f���

������

At this point we must draw the readers� attention to the fact that while 	f and 	�

satisfy the boundary conditions Eq� ����� and Eq� ����� there is no reason to expect

that f� and �� do� In fact� numerical evidence hints that f� and �� have little direct

connection with the boundary conditions for f and � except in the case of y � ��

In other words� it is likely that the expansion in powers of ���� does not converge

uniformly� so that for a �xed � higher orders in the expansion Eq� ������ become

increasingly important as the boundary is approached� As a result� the solution of

the zeroth order equations ����
� might therefore be a good approximation to 	f and

	� only in a restricted area around the ridge away from the boundaries� In addition� a

substitution of the series into the expression for the elastic energy must be done with

caution� One cannot� in general� interchange the order of summation and integration

when integrating non�uniformly converging series� Thus� individual terms in the series

Eq� ������ when substituted into Eqs� ������ and ������ may yield diverging integrals�

The leading order behavior of the elastic energy is found correctly� however� since

that claim did not depend on the series expansions of f and ��

To help solve equations ����
� we observe that the boundary conditions do

not introduce another length scale to the problem� Therefore� the transverse pro�le



��

of the ridge ought to scale with the distance from its midpoint �x � �� In other words�

di�erent �x � const slices of the strip are similar and can be made to coincide by

an appropriate rescaling of the axes� In a mathematical language� one must �nd a

functional form of f� and �� such that the di�erent �x � const slices are related to

each other by a scale factor q	�x
 that depends on �x only� By assuming scaling in �x

we hope to decouple it from the new transverse variable � � �y�q	�x
� We assume that

f�	�x� �
 � q�	�x
p�	�
� ��	�x� �
 � q�	�x
p�	�
� 	����


To show that Eqs� 	����
 separate only when � � � � � we carry out the

substitution for general exponents� We obtain

p����
�

� q��q��� 
�p��
�
p� � �p��

�
p� � �	p��

�
p�
�
� p��

�
p�
�

� �

�	q�
�q� f	� � �
�p���p� � �	� � �
p���p� � �	� � �
	� � �
p��p
�

�g 	����


p����� � �q��q������ 
�p���p� � �p���p
�

�� �

�	q�
�q����
n
	�� �
�	p�

�

� � �	�� �
p��

�
p�
o

	����


The separation of variables conditions on the scale function q	�x
 demand that q��q��� �

A� and q��q������ � A� which requires that � � �� Unless the factors in curly braces

vanish� separability also demands that 	q�
�q� � A� and 	q�
�q���� � A�� From the A�

and A� conditions it follows that q��q � 	A��A�
	q�
� which implies that q� � qA��A��

Since we require that q�	�
 � � and q	�
 �� �� one of the following two conditions must

be true� First A� may vanish which leads to an unphysical choice q�� � �� Second�

the factors in curly braces may vanish which happens only if � � � � �� We conclude

that indeed � � � � � is the only choice for which variables separate� This choice

of the scaling exponents in the q	�x
�scaling of the solution to the rescaled equations

implies that width of the ridge solution scales with the distance from the vertex in

the same way as the ridge sag� As mentioned above� the boundary conditions on f

require that its transverse derivative �f��y approach a constant independent of x�

If a similar condition is to hold for f� then inescapably � � �� The validity of the

q	�x
�scaling hypothesis needs to be corroborated by some other means� In section ���



��

we present numerical evidence supporting the q��x��scaling ansatz� here we only note

that this evidence is convincing�

Substitution of the ansatz Eq� ������ with � 	 � 	 
 into the zeroth order

equations ������ gives

p����

�
	 q��q� �p��

�
p� � p��

�
p� � ��p��

�
p�

�
� p��

�
p�

�
�
 ������

p����

�
	 �q��q� �p��

�
p� � �p��

�
p�

�

 � ������

Separation of variables provides the equation for the scale factor q��q� 	 A� where A

is some constant� This equation� together with the condition that q��x� be even can

be solved by a substitution g�q� 	 q���x� to yield�

�x 	



�

�
��
�
� arcsin

vuutq��x�

q���
�

vuutq��x�

q���

�

�

q��x�

q���

��
� � ������

where the separation of variable constant is related to q��� via A 	 ���q������� The

scale factor q��x� has a singular derivative near the vertices� since for �x 	 
�� � �

q��� �
�
��

�

����

����� ������

which is consistent with the suspicion that the series expansion ���
�� does not con�

verge uniformly� Numerical simulations of the ridge show� however� that the scale

factor q��x� correctly captures the shape of the ridge midline away from the vertices�

������ Transverse Ridge Shape

The separation of variables ansatz implies that once q��� �related to the ridge

sag� has been speci�ed� the shape of the ridge midline is asymptotically independent

of the details of the boundary conditions� since nowhere in the derivation were these

details utilized� The transverse ridge pro�le p� and p�� however� does depend on

the detailed form of the boundary conditions� To see that we make the following

transformation to the new functions ����� for 	 	 
� � via

����� 	 p����� �p�

����� ������
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The functions p� can then be readily found from

p���� � G�� � �

Z
�

�
d�

�����

��
� ������

where whereG� are integration constants� This transformation allows one to integrate

the transverse equations ����	� once� We obtain

���
�
�

�

�
��
�

� A���� �D�

���
�
�

�

�
��
�

� �

�

�
A��

�
�D��

������

Here D� are the integration constants �di
erent from G�� allowing for a non zero

asymptote of the functions ��� The large � behavior of �� depends on whether the

integrals of the right hand sides of Eqs� ������ are �nite� If they diverge� �� also diverge

in the � � � limit as some powers of �� This behavior is clearly unphysical� If� on

the other hand� these integrals are �nite� �� have well de�ned averages determined by

D� in the � �� limit� The deviations of �� from these average values must remain

�nite for large �� Suppose that these deviations vanish asymptotically� Then� an

expansion around the average values of �� for large � yields a system of linear ordinary

di
erential equations� This implies that �� approach their asymptotic constant values

exponentially fast� The �nite limit of �� as � ��� would imply a �nite stress and

curvature far away from the ridge� However� since we expect the series Eq� ����
� to

converge non�uniformly� the large � behavior of �� is likely to be unphysical�

What makes solving the transverse zeroth order equations ������ di�cult if

not impossible is the fact that they contain non�universal constants D� and D� that

carry information about the large � behavior of �� and �� that depends not only on

the boundary conditions for f and �� but also on the behavior of the higher order

terms in the ���� expansion Eq� ����
�� Let us� nevertheless� discuss the behavior of

the functions �� near the boundaries and ways in which it may be connected with

the boundary conditions for the ridge� The second derivatives of f� �and ����in terms

of which the boundary conditions may be given� read

��f�

��y�
� �

�

�q
��
�
�

��f�

��x��y
�

q�

q
��
�
�

��f�

��x�
� q���� �

q���

q
��
�
� ������
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The boundary of the strip x � �X�� is mapped onto the � � �� segments plus

the �special� points � � �� Note that since ��

� decays exponentially for large � the

only concern in satisfying boundary conditions is the behavior of the q��� term in

��f���x
�� For x �� �X�� and y � � that term reaches a constant� It diverges when

x approaches the boundary x � �X�� for a �nite y� Problems could also arise at the

�special� points � � �� x � �X�� since q goes to zero there� and q� and q�� diverge�

It is evident that near these �special� points knowledge of higher order terms in the

���� expansion is needed to determine boundary condition dependence of the zeroth

order term in the expansion�

Let us for the moment consider only the � � � boundary conditions� We

might at �rst assume that all of the higher order functions in the ���� expansion obey

q	
x��scaling with the same q	
x�� Then� from Eq� 	����� we deduce that all of the

second derivatives of f� 	and ��� will vanish in that limit if

� � lim���

X

j

��j�
� 	����j��� 	�����

This is possible despite the fact that the individual terms in the series may diverge in

that limit� The sum must vanish for large � fast enough to overcome the divergence

of the q�� term as the boundary is approached�

As far as the �special� vertex points � � � are concerned� it seems that

the situation is much worse� All three second derivatives in Eq� 	����� diverge� The

remedy might lie in considering the full expansion as above and also in remembering

that some of the second derivatives must diverge at the vertex because the boundary

condition for f itself is singular there� The real reason for these di
culties is that

the conditions of validity of the thin plate equations are violated near the vertices so

that the full three dimensional elasticity must be invoked there�

The simplicity and the apparent symmetry of the Eqs� 	����� must point to

some physical symmetry in the problem that forces this behavior to occur� Perhaps

further light can be shed onto the physical meaning of the functions �� by writing
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down the expression for the elastic energy of the sheet in terms of the separable

solution� The leading term in the �����expansion of the total elastic energy reads

E �
Z
d�xd�y

�

q�

�
�p��

�
�� � �p��

�
��
�

�
Z

d�x

q��x�

Z
d�

��

�
�
�
d��
d�

�
�

�

�
d��
d�

�
�
�
� � ����	�

One can make contact with the boundary condition �f � �j�yj as �y � ��

The coe
cient of the linear growth of f� must be the same as that of f far away from

the ridge� Therefore� if the integral in Eq� ������ converges� this boundary condition

gives G� � �� Now one can use the y � �y symmetry of the problem and su
cient

smoothness of functions involved to conclude that p�

�
��� � � which leads to

Z
�

�

d�

�

d�����

d�
� ��� ����
�

������ Dihedral Angle Scaling of the Separable Solution

Even without having solved the transverse equations one can deduce the

behavior of the solution for di�erent dihedral angles � just from the form of the Eqs�

������� We begin by noting that there exists a two�parameter family of transforma�

tions that produce new solutions� For example if ����� is a two�component solution�

then ����� � S�
���S��� is also a solution of the equations ������ but with a di�erent

separation of variable constant A� � S�

�
�S�A� We must allow for variation of A since

it will undoubtedly depend on the dihedral angle� Using the boundary condition on

�� Eq� ����
� we can �nd the corresponding dihedral angle �� � S�S��� With this

condition� there is a one�parameter family of scale transformations which produce a

solution for the dihedral angle �� given that for the dihedral angle �� Let us �x a

reference solution ��� with � � � so that all other solutions are labeled by the scale
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factors S� and S�� We can now �nd how various quantities of interest are a�ected by

the scale transformation� We start with the simplest cases

� � S�S�

p� � p� � S�

q � A���
� S

����
�

S
���
�

�

������

The relevant quantities such as the ridge sag d � qp�� the transverse curvature in the

middle of the ridge C � �	�q�p��
�
� both evaluated at 
x � � � �� and the elastic energy

E from Eq� ������ all turn out to depend only on the product of the scaling factors

S�S� which unambiguously determines their scaling with the dihedral angle �� Using

Eqs� ������ we get

d � qp� � S
����
� S

���
� S� � ����

C � �	�q�p��
�
� S

���
� S

����
� S�S

�

�
� ����

E �
Z

d
x

q�
x�

Z
d�

��

�
d�

d�

�
�

� S
���
�

S
����
�

S�

�
S�

�
� �����

����
�

in agreement with the dihedral angle scaling argument of Sec� ����

One can also predict how the width of the ridge w which scales as S��

�

depends on the dihedral angle �� Since the transverse curvature decays exponentially

away from the ridge� the width of the ridge scales as the radius of curvature times

the bend angle �� Therefore

w � S��

�
� �C��

� ������ ������

This equation �xes the dependence of the scale factors S� and S� on � so that solutions

for all dihedral angles can be generated from a single solution for some �� All of the

��scaling predictions have been convincingly veri�ed by the numerics�

���� Numerical Simulation of the Stretching Ridge

������ The Lattice Model

We have used a lattice model of an elastic sheet introduced by Seung and

Nelson �		�� An elastic sheet is modeled as a triangular lattice of springs of unstretched



��

length a and spring constant K after Ref� ����� Bending rigidity is introduced by

assigning an energy J����n���n�� to every pair of adjacent lattice triangles with normals

�n� and �n�� Seung and Nelson showed that when strains are small and the radii of

curvature are large compared to the lattice constant	 this model membrane bends and

stretches as a sheet of thickness h 
 a
q
�J�K made of isotropic homogeneous elastic

material with Young�s modulus Y 
 
Ka��h
p
�� and Poisson ratio � 
 ���� The

bending modulus is � 
 J
p
��
� It turns out that the Gaussian bending rigidity �G

introduced earlier is not correctly captured by this lattice model� Gaussian bending

energy	 however	 is not relevant for closed shapes without edges	 for which it is a

topological invariant ����� In addition	 this energy can be expressed as an integral

over the strip�s boundary� For the boundary conditions that were implemented in

this work	 the boundary integral vanishes�

The lattice model mimics the energy functionals Eqs� �
�
�� and �
�
���

Equilibrium shapes of this model	 therefore	 are solutions of the von K�arm�an equations

since the energies were a direct consequence of these equations� A numerical test of

the asymptotic scaling predictions with the lattice model can only test the correctness

of the scaling analysis and not the validity of the von K�arm�an equations themselves�

To administer such a test one would have to introduce a lattice model for a three

dimensional elastic solid and then make it into a thin sheet�

A variety of shapes that exhibit a sharp vertices connected by ridges in the

limit of small thickness were made by either introducing disclinations or applying

appropriate boundary conditions� We studied a regular tetrahedron shape shown in

Fig� � that includes four disclinations of charge � �de�ned as the integrated Gaussian

curvature�	 a �boat� shape shown in Fig� �� that is a sheet with two disclinations of

charge ���	 and a �bag� shape shown in Fig� �� that is a cylinder with one end sewn

shut� The bag shape contains two disclinations of charge �� We also applied forces

to the boundary particles of a rhombus shaped piece �see Fig� �
 of the simulated

material and a rectangular piece so as to bend them by an angle � � 
��

Shading in the pictures is proportional to the stretching energy density� The

stretching energy oscillates as one moves away from the ridge line rather than going
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Figure �� A regular lattice tetrahedron of size X � ���a and elastic thickness h �

a����	
 shading is proportional to the stretching energy density�
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Figure ��� A two�vertex boat shape withX � ����	a and h � a�
��� The two vertices

are of �sharpness� 
disclination charge or integrated Gaussian curvature� ����

monotonically to zero� This is not surprising since the transverse behavior of the ridge

shape and stresses is a solution of the second order ordinary di�erential equations of

the �oscillatory kind�� i�e� the sign of the second derivatives of �� in Eqs� 
����� are

such as to curve �� toward the � axis� For the shapes with a free edge 
Figs� �� and

���� there are regions of large curvature at the free edge opposite to the vertices� Faint

induced ridges appear between the vertices and the induced �vertices� at the edges�

These induced features become stronger as the dimensionless thickness � decreases�

We used a conjugate gradient routine to �nd a number of minimum energy

shapes with a range of geometric parameters such as the length of the bag� the dihedral

angle of the bent strip� and the dimensionless thickness �� We measured the ridge

curvature� the longitudinal strain� the elastic energy� the sag� the vertex�to�vertex

distance� and the longitudinal and the transverse curvature pro�les to be compared

with the predictions of the preceeding sections�
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Figure ��� A two�vertex bag shape with the ridge of length X � ��a� thickness

h � a�	
��� and the length of 	X� The sharpness of the vertices is � as in a regular

tetrahedron�

Figure �	� A kite shape made from a �at� rhombus�shaped surface by exerting normal

forces on the perimeter sites� The forces constrain the perimeter to follow a rectilinear

frame with dihedral angle � equal to that of the tetrahedron� namely cos��
�����

Ridge length is X � ���a and thickness is h � a����
�
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Figure ��� Mid�ridge curvatures for simulated surfaces� relative to the curvature of a

single cone at the same distance from its vertex� Horizontal axis is the anticipated

scaling variable �X�h����� Open squares� kite shapes� open circles� boat shapes� closed

triangles� bags with ridge of length X 	 
�a and skirt length of X� closed diamonds�

bags of twice as long a skirt �X� plusses� tetrahedra with ridge length X 	 
�a� x
s�

tetrahedra with ridge length X 	 ���a� Straight lines indicate the anticipated scaling

behavior�
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������ A Test of the Scaling Predictions

We �rst tested the dependence of the mid�ridge curvature on the dimension�

less thickness � � h�X� In Fig� �� we plot the transverse curvature Cyy��� �� 	 C�

vs� the predicted scaling variable �X�h���� for di
erent shapes� The curvature is ex�

pressed relative to the curvature at the same point if only one vertex were present

�which is proportional to X���� We note �rst that the curvatures follow the antic�

ipated �X�h���� scaling� The tetrahedron has a reduced curvature of �����X�h�����

as determined from �tting all the data� The uncertainty in this coe
cient derived

from the scatter of the data is less than ������ Second� the slopes and the intercepts

of the straight lines on the graph depend on the dihedral angle � of the ridge as well

as the details of the boundary conditions� For example� the ridges in the bag shapes

of di
erent length have e
ectively di
erent dihedral angles and thus show a di
erent

slope in the ridge curvature scaling� Third� in all cases� the ridge begins to dominate

the curvature �doubling the curvature as compared to that of a single cone� for X�h

in the range of ��� to �����

We analyzed the tetrahedral shape in greater detail� We �rst veri�ed that

the shapes were independent of lattice size for a �xed �� The curvature at mid�ridge

di
ers from the extrapolation to an in�nitely �ne lattice by no more than two percent�

Since our results are insensitive to the lattice spacing for a given thickness� they are

not sensitive to the details of the lattice model used� but would hold quantitatively for

any elastic material� The transverse curvature pro�le shrinks inward with decreasing �

which is consistent with the assumption of elastic energy con�nement� The shrinkage

is consistent with the anticipated �h�X���� scaling� This can be seen by plotting

the mean�squared curvature across the ridge as shown in Fig� �� for four di
erent

thicknesses� The ridge pro�les collapse onto a single scaling curve�

We also tested the assumption� made in the energy scaling argument� about

the movement of the vertices and the implication of that negligible vertex movement

for the scaling of the mid�ridge strain� In Fig� �� we plot the fractional vertex�to�

vertex movement and the longitudinal ridge strain for a tetrahedral shape with the
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Figure ��� Squared transverse ridge curvature C�

yy of the lattice tetrahedra scaled by

X���X�h���� along the perpendicular bisector of the ridge� The distance y from the

ridge is scaled by X�X�h������ The legend indicates the size to thickness ratios X�h

used� Longitudinal strain pro�le �xx�y� is similar�
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Figure ��� Relative vertex movement divided by X �circles� and the mid�ridge longi�

tudinal strain �xx �squares� for lattice tetrahedra as a function of the predicted scaling

variable ����� The mid�ridge strain is compressive�

edge of length ��a vs� the predicted scaling variable ����� We 	rst note the mid�ridge

strain is compressive rather than tensile as the energy scaling argument assumed� The

vertices move closer by an amount large enough not only to relieve the extensional

strain that would result if the vertices were stationary
 but to cause compression along

the ridge midline� The strain changes its sign and becomes tensile as one moves away

from the ridge midline in the transverse direction�

Another assumption of the energy scaling argument was that the of the ridge

sag
 i�e� the vertical displacement of the middle of the ridge from its limiting straight

line shape
 is of the order of the ridge radius of curvature� As a consequence
 the

scaling of the ridge sag with the thickness � was deduced� In Fig� �� we plot the ridge
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Figure ��� The sagging of the middle of the tetrahedron ridge in units of X as a func�

tion of the predicted scaling variable ����� The straight line �t indicates agreement

with the scaling prediction�

sag for a tetrahedron of size X � �	a as a function of the predicted scaling variable

����� The data fall onto a straight line in agreement with the scaling argument�

The total energy of the tetrahedron is expected to scale as �
X�h����� In

Fig� �� we plot the measured total energy of the tetrahedra of sizes �	a and �		a

in units of �� The energy per ridge is consistent with the asymptotic formula E �

�
����	 � 	�		
�
X�h����� The indicated uncertainty re�ects only the scatter in the

data used� For comparison� one can show that the combined energy of the four

disconnected cones making up the tetrahedron� namely

��
��	�� log
X�a� � const�� 
�����
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Figure ��� Total elastic energy in the units of the bending modulus � for lattice

tetrahedra with X � �� lattice units �squares� and ��� lattice units �triangles�	 vs�

�X�h���� � ������ Dashed lines represent the least
square �ts through the upper

seven points of the data� Solid lines re�ect the energies of four separated cones of

length X and sharpness � as in a tetrahedron	 using Eq� �
�
�� without the additive

constant� Lower line� X � �� lattice units� upper line� X � ��� lattice units�

�Numerically
determined cone energies fall close to these lines��



��

is independent of the moduli G and thus independent of the elastic thickness h�

The cone energy is purely bending and can be obtained by integrating the squared

curvature that is inversely proportional to the distance from the vertex over the area

of the cone� The lower limit of integration should be h� but due to the underlying

lattice this lower cuto� is really the lattice constant a� Therefore� the cone energy is

independent of h in the limit that h is much smaller than the lattice spacing a� In our

numerical studies h varied from a to a few percent of a� Accordingly� we observed a

few�percent dependence of the cone energy on h� Evidently� the cone energy remains a

signi�cant fraction of the tetrahedron energy for all tetrahedra studied� Nevertheless�

the asymptotic scaling gives less than ten percent error for tetrahedra larger than

about ��� times their thickness�

We used the lattice tetrahedra with the edge length of X 	 ���a to verify

another consequence of the energy scaling argument
the virial theorem
that as�

serted that if all of the elastic energy was concentrated in the ridges then the total

bending energy is �ve times the total bending energy� In Fig� �� we plot the ratio of

the total bending to the total stretching energies as a function of the dimensionless

thickness �� This ratio approaches the predicted value of Ebend�Estr 	 � within a few

percent for the values of � � ����� For the smallest values of � on the plot the ratio

deviates from the asymptotic limit due to lattice e�ects�

We tested the dihedral angle scaling by making a long rectangular strip of

dimensions ��a by ��
a and applying normal forces to the perimeter points in such

a way that the long boundaries follow a rectilinear frame bent by a dihedral angle

����� For all angles we �xed the thickness to size ratio � � ������� The results are

displayed in Figures �� and ��� Fig� �� is a plot of the total elastic energy in units of

the bending modulus � vs� the anticipated scaling variable ����� To a good precision

the energy does indeed exhibit the predicted scaling behavior for a wide range of

dihedral angles� The deviation at the small bending angles is due to the �nite size

e�ects� Since the width of the ridge diverges as � � � larger sheets are needed for

smaller angles to make sure that the width of the ridge does not exceed the size of



��

Ebend

Estr

Figure ��� Ratio of the total bending to the total stretching energy vs� the dimen�

sionless thickness � for a regular tetrahedron of edge length ���a� The predicted

asymptotic limit of � is approached for � � �����



��

0

40

0 1 2

E

7/3

Figure ��� Total elastic energy in units of the bending modulus � of ��a by ���a

strips of thickness h � ���	�a bent by an angle �� A straight line 
t indicates good

agreement with the scaling prediction for a large range of dihedral angles�

the sheet used in the simulation� In Fig� �� the mid�ridge curvature Cyy
�� in units

of X�� is plotted against ����� The data agree well with the scaling prediction�

Another test relevant to the question of the boundary condition dependence

of the scaling predictions is the comparison of the coe�cientsR for di�erent boundary

conditions in the asymptotic form of the total elastic energy of the ridge E�� �

R ���������� The value of R for the tetrahedral shape� was found by examining

the dependence of the energy on � for a 
xed dihedral angle� It was found to be

Rtet � ���	� � ������ For the strip geometry we have found Rstrip � ���� � ����

by 
xing � and varying �� Here the error range re�ects only the uncertainty arising

from scatter in the numerical data� However� there are additional errors resulting from

corrections to the asymptotic scaling not properly accounted for in our crude 
tting

procedure� We therefore suspect that the scaling coe�cient R depends insensitively

on the boundary conditions and varies only by a fraction of its value� Ref� ���� suggests
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Figure ��� The mid�ridge curvature in units of X�� for the ��a by ��	a bent strips

of thickness h 
 ����	a vs� the anticipated scaling variable �����
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Figure ��� Transverse curvatures Cyy�x� y� for x � � �circles�	 x � 
 �squares�	

x � �� �triangles� and x � �
 �diamonds� each scaled by Cyy�x� �� vs� the transverse

coordinate y scaled by C��
yy

�x� ��� The curvatures are found numerically from a 
�a

by ���a strip bent by a �� degree angle�

that	 in fact	 under loading	 the energy of a ridge can only change by no more than

a �nite fraction before the ridge buckles�

A rather suggestive demonstration of the q�
x��scaling is presented on Fig�

��� We plot the transverse curvatures for di�erent slices 
x � const obtained from

a simulated strip of dimensions 
�a by ���a bent by normal forces applied to the

x � �X�� parts of the boundary to make a �� degree angle� The dimensionless

thickness is � � ����� The curvature for each slice is scaled by its value at the origin


y � �� The transverse coordinate is scaled by the inverse of the curvature at 
y � ��

These pro�les collapse onto a single scaling curve�

Con�rmation	 beyond just a suggestive illustration	 of the q�
x��scaling of the

ridge shape requires more thought since the zeroth order separable solution obtained
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Figure ��� Scale factor expansion coe�cients b� �circles� and b� �squares� as extracted

from a least squares �t to the functional form of the transverse radius of curvature

along the ridge for tetrahedra of X � 	��a�

above is only valid in a region around the ridge away from the boundaries� Therefore


to test the predicted functional form of the scale factor q��x� one ought to look a

local property of the numerical solution away from the boundary and �nd its limit as

�� �� Numerically one has access to only a limited range of thickness to size ratios�

�� cannot be too small otherwise lattice e�ects become signi�cant�� Nevertheless


the Taylor expansion coe�cients of the scale function q��x� around �x � � can be

successfully extracted from the numerics� Since there is one adjustable parameter q���

we must look at the �rst two coe�cients in the expansion q��x� � q����	
b��x�
b��x�


� � ��� Expanding Eq� ������ we �nd that b� � ���� � ���� and b� � ����� � �����

For a numerical test we used the longitudinal variation of the transverse

ridge radius of curvature that is predicted to be proportional to the scale factor
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Ryy � ��Cyy � q��x�� The coe�cients b� and b� in the expansion Ryy��x� � Ryy�����	

b��x
� 	 b��x

�� can be extracted from the numerics and compared to those obtained

from Eq� �
����� Fig� �� displays a plot of the coe�cients b� �circles� and b� �squares�

versus the dimensionless thickness � obtained by a least squares quadratic polynomial


t to the functional forms of Ryy��x� in the range of j�xj � ��� for tetrahedra of varying

thicknesses but 
xed edge length X � ���a� We see that these coe�cients have a

well de
ned limit as �� � which is approached algebraically� The extrapolations to

� � � give b� � ���
� ���� and b� � ����� ���� as compared to the predicted values

of b� � ���� and b� � ���
�

���� Conclusions and Unsolved Problems

We examined a straight ridge singularity in bending of thin elastic plates�

These singularities are thought to arise under quite general circumstances� The details

of how the sharp crease singular limit is approached were established� We found that

certain ridge properties asymptotically depend only on a few geometric characteristics

of the ridge� These properties were found by an energy scaling argument the essence

of which is that ridge behavior is governed by a competition of the bending and

the stretching energies that vary as a power of the characteristic ridge curvature� A

boundary layer analysis of the von K�arm�an plate equations puts the conclusions of

the energy scaling argument on a 
rmer footing� We note that the equations used

to describe the elastic sheet assumed linear stress�strain relations� Since the strains

in the ridge were found to vanish in the limit of small thickness� the results should

be applicable to the real materials in which the linear stress�strain relations are more

accurate at small strains� We 
nd that boundary layer solution exhibits three types

of scaling �or self�similar structure� in the singular limit �� ��

The ��scaling seems to be inevitable and depends only on the geometry of

the singularity� The asymptotic ��scaling laws for the characteristic ridge curvature�

the ridge strain� the ridge width� the ridge sag� and the elastic energy were established�

The elastic energy consists of comparable amounts of the bending and the stretching
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energies� A virial theorem that relates the bending and stretching contributions to

the total elastic energy has been derived from an energy scaling argument and veri�ed

numerically� The virial theorem a�ords a useful test of elastic energy con�nement�

When most of the elastic energy is con�ned to the ridges the virial theorem predicts

Ebend�Estr � � for the ratio of the bending and the stretching energies in the limit of

the vanishing thickness�

The ridge ��scaling is by no means a unique type of scaling� Scheidl and

Troger ��	
 found that a ring ridge that appears in strong axisymmetric buckling of

a spherical shell has a width that scales as ���� as opposed to the ���� scaling for the

width of the straight ridge singularity examined in this article� The property that

makes the straight ridge important is that its energy grows slower with size than that

of the ring ridge� The ring ridge is therefore unstable to breakup into straight ridges

when the cost of distorting the rest of the sphere can be overcome by the energy gain

from the formation of the straight ridges� This point is illustrated in Fig� ��� A cone

that has been poked through to create a ring ridge� spontaneously breaks up into

three straight ridges� We believe that straight ridges are the dominant type of the

singularity in crumpled thin elastic sheets� The morphology of a crumpled sheet can

thus be represented as a network of straight ridges that bound �at facets� Since in

the thin limit the elastic energy is concentrated into a progressively smaller fraction

of the crumpled sheet� the ridges can� at least in the �rst approximation� be treated

as independent� Therefore� once the ridge network is given characterization in terms

of the distribution of the lengths and the dihedral angles of the ridges� the elastic

energy of the crumpled sheet is given by the sum E�� �
P

iRi �
����
i �

���
i � The scaling

coe
cients Ri depend on the details of the boundary conditions such as the external

load supported by each ridge� Preliminary studies show ���
 that Ri varies at most

by a �nite fraction�

The second type of scaling is the dihedral angle scaling of the ridge prop�

erties� A small angle argument that made an assumption about the transverse ridge

shape predicted the scaling of the total energy� the ridge curvature and other quanti�

ties with the angle� Analysis of the the separable solution of the rescaled von K�arm�an
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Figure ��� A cone with the vertex of sharpness ��integrated Gaussian curvature� has

been poke through with the purpose of creating a ring ridge of the type discussed by

Scheidl and Troger� Instead� the ring ridge broke up into three straight ridges�

equations show that the dihedral angle scaling behavior persists up to arbitrary di�

hedral angles �� This type of scaling only depended on the form of the transverse

equations and not on the nature of their solution and thus is likely to be independent

of the details of the boundary conditions�

The third type of scaling exhibited by the ridge in the small thickness limit

is the self�similarity of the ridge shape� By assuming the q��x��scaling we are led to a

separable dependence on the longitudinal and transverse position� Neither the scaling

nor the separability� however� have been proven� We have only found suggestive

numerical evidence supporting separability by examining di	erent slices of the ridge�

In addition� the 
rst two coe�cients in the Taylor expansion of the scale factor q��x�

have been found to agree with the numerics� A more rigorous test of separability

is still needed� The transverse pro
le of the ridge is most likely dependent on the

boundary conditions since the transverse equations contain non�universal integration

constants� In fact� the transverse curvature oscillations away from the ridge in the

tetrahedron shape is di	erent from that in the strip shape� The simplicity of the
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transverse equations also needs to be better understood� Usually such simplicity

re�ects some underlying physical symmetry in the problem�

A future program aimed at a successful description of forced crumpling must

include �rst� a rigorous proof of the straight ridge morphology of the crumpled state�

This amounts to showing that if the size of the sheet and the compression factor are

kept �xed there is a well�de�ned limit for the shape in the limit of the vanishing

thickness that is a network of straight ridges that bound �at facets� Second� an

understanding of the �non�universal� ridge properties� such as the coe	cient in the

energy scaling� for example� that depend on the details of the boundary conditions�

is needed� These details include external loads that must be applied to collapse the

sheet in the �rst place� In particular� the way in which these external loads are

distributed through the crumpled membrane must be understood� Other ridges in

the network also modify the boundary conditions for a given ridge leading to a ridge

interaction� Third� since further compacti�cation of a crumpled sheet proceeds by

a proliferation of the ridges via buckling� one must establish the buckling threshold

and the buckling modes of a ridge� Fourth� the self�avoidance constraints must be

included in the study of the forces that cause the ridges to buckle�

The main question to be addressed is whether� in fact� a speci�cation of

the ridges in terms of their lengths and dihedral angles is su	cient to estimate the

elastic energy of a crumpled membrane The answer hinges on a study of the ridge

buckling properties� Preliminary results 
��� suggest that the elastic energy of a ridge

can change due to external in�uences by at most a �nite fraction before it buckles�

A comprehensive model of the crumpling dynamics would have to incorporate all of

the aspects of the ridge behavior mentioned above�
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