Transitions in viscous withdrawal

Wendy W. Zhang
Physics & James Franck Institute
University of Chicago

Minisymposium:
Tip-streaming & flow/EHD flow focusing

APS-DFD Meeting
San Antonio, TX
November 2008
Introduction: flow-driven shape transition

selective withdrawal viscous entrainment

above Q_c threshold withdrawal flux

1 cm

hump spout

Simple example of non-equilibrium transition?

Cohen & Nagel PRL 2002
Thin spout used to encapsulate biological cells for transplant therapy

immunoisolation of pancreatic Islets

Jason Wyman, Seda Kizilel, Milan Mrksich, Sidney R. Nagel, Marc R. Garfinkel, …, University of Chicago

- Bigger particles initiate breakup in thicker region of spout
- Thin, uniform coat on irregular particles
- Independent of particle size
Background

Axisymmetric withdrawal in stratified, deep layers

1. Selective withdrawal / viscous entrainment
 Cohen PRE ‘04, Zhang PRL ‘04, Case & Nagel PRL ‘07, Blanchette & Zhang ‘08…

2. Tendril in geophysical flows
 Ivey & Blake ‘85, Lister ‘89; Davaille ‘99, Jellinek & Manga ‘02, Davaille, Girard & Le Bars ‘02, Schmidt & Zhang ‘08…

3. Viscous drainage
 Chaieb ‘04, Courrech du Pont & Eggers ‘06…

Related phenomena

1. Flow-focusing
 Ganan-Calvo et al. ‘00, Anna, Bontourx & Stone ‘03, Utada et al. ‘05, Suryo & Basaran ‘06, Marin et al. ‘07…

2. 2D air entrainment
 Joseph et al. ‘91, Jeong & Moffatt ‘92, Simpkin & Kuck ‘00, Eggers ‘01, Lorenceau, Restagno & Quere ‘03…

3. Drop emulsification
 Taylor ‘34, Taylor ‘64, Buckmaster ‘73, Rallison & Acrivos ‘78, Acrivos & Lo ‘78, Grace ‘82, Stone ‘94, Navot ‘99, Blawzdziewicz, Cristini & Loewenberg ‘02…

4. Inviscid drainage
 Sautreaux ‘01, Lubin & Springer ‘67, Imberger & Hamblin ‘82, Tuck & Vanden-Broeck ‘84, Miloh & Tyvand ‘93, Hocking & Forbes ‘01…
Hump spout transition

How does the surface fail?
- hump height h_c
- curvature at top of hump k_c

When does the surface fail?
- threshold volume flux Q_c

Focus on evolution of steady-state solution
Not dynamical transformation between 2 states
Experiment’s parameters

- **Pipette Height** $S \sim 0.5 \text{ cm}$
- **Capillary Length** $l_i \sim 0.3 \text{ cm}$
- **Strain Rate** $E \sim Q/4$ $S^3 \sim 0.3 \text{ s}^{-1}$
- **Hump Height** $h \sim 0.1 \text{ cm}$
- **Hump Curvature** $\# \sim 1/(50 \mu \text{m})$

\[\text{Re} = \text{inertia} / \text{viscous} \quad 0.006 \]
\[\text{Ca} = \text{viscous} / \text{surface tension} \quad 0.02 \]
\[\text{Bo} = \text{hydrostatic pressure} / \text{surface tension} \quad 0.1 \]
\[\lambda = \text{lower layer viscosity} / \text{upper layer viscosity} \quad 1 \]
Minimal model
Marko Kleine Berkenbusch & Itai Cohen

• Deep lower layer modelled as interior surface with constant pressure jump
• Focus on $S < \text{Capillary length } l_\text{c}$
 Pin surface at $r=a$
 (Lister JFM ‘89 analyzes $S >> l_\text{c}$ regime)

Kleine Berkenbusch, Cohen & Zhang JFM in press
Numerical results: steady shape

Increasing withdrawal flux Q
Numerical results: steady shape

increasing withdrawal flux Q

smooth shape @ Q_c
Numerical results: steady shape

increasing withdrawal flux Q

Above Q_c, finger grows until it reaches sink

smooth shape @ Q_c
Numerical results: steady shape

Above Q_c, finger grows until it reaches sink
smooth shape @ Q_c

increasing withdrawal flux Q
Numerics as $Q \rightarrow Q_c$

height saturates as $(Q_c - Q)^{1/2}$

$$h_c \uparrow$$

curvature slowly saturates as $(Q_c - Q)^{1/2}$
Experiment as Q_c

height saturates
as $(Q_c - Q)^{1/2}$
Experiment as Q

Q_c

height saturates as $(Q_c - Q)^{1/2}$

Together numerics & measurement show curvature saturates

curvature just starting to saturate at end of range
How does the surface fail?

Steady surface fails “everywhere at once”
(saddle-node bifurcation)
Hump spout transition

How does the surface fail?

Steady surface fails “everywhere at once” (saddle-node bifurcation)

When does the surface fail?

Threshold volume flux Q_c
Numerics: two layers of different viscosities

Francois Blanchette

(\frac{\text{lower layer viscosity}}{\text{upper layer viscosity}}) \quad \mu_0/\mu

\textit{insensitive to viscosity contrast}
Steady-state shapes at Q_c
Steady-state shapes at Q_c
Recall linear stability Lister JFM ‘89

Downward force by surface tension is essential for steady hump solution
(resistance from gravity & lower-layer flow are NOT enough)

→ Focus on contributions to surface tension force
Estimate force due to surface tension

contribution from sharply curved tip

\[F_{\text{tip}} \sim (2 \#_c) \left[2 \left(\frac{1}{\#_c} \right)^2 \right] \sim 4 \frac{1}{\#_c} \]

Laplace pressure

Overall deflection dominates if \(h_c \#_c >> 1 \)

contribution from overall deflection

\[F_{\text{defl}} \sim \left(\frac{2}{l} \right) (h_c l) \sim 2 \frac{1}{h_c} \]

deflected area

Laplace pressure