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-Dilation. 

-Hopper flows.

-Waves in vibrated layers.

-Droplets of fine grains: wetting?

-Sound in chains of beads.

From a grain to avalanches: Exhibit at the Science museum of Santiago

Newton, Hertz, Faraday, Reynolds, Bagnold.

Ottino, Nagel, Jaeger, Umbanhowar and many others.



Dilatancy in a granular material: Reynolds 
1885

but

This explain what happens when walking on wet sand.



Walking on sand: a model experiment

Cell size: 1cm deep, 2cm wide, 
5cm long

Pushing object: 3mm

Speckles methods
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Speckles method for displacements

Scanning
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A rough estimate of the free surface deflection.

Check next vacations!.
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Hopper flows:  How hourglass works



vertical transfer of momentum/area time
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“Thermal speed” ~ c

In a fluid



In a granular material
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Force fluctuations might 
dominate flows

For a fluid 
For granular materials gDV

gHV

∝

∝

-Free falling arch?
-Grains accelerate over a 
distance D:

In general there is no intrinsic thermal speed:
-Poor separation scale: Hydrodynamic difficult 
-Random fluctuations depend on energy injection
-Absence of well adapted experimental methods.

gDV ∝
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Applications I: Underground copper mining
Chile largest copper producer



Cut hoppers

The standard procedure for underground mining



The starting point

“Induce fracture 
initiation”



The common believe

As the mineral is extracted the fracture front propagates…



If the mineral is extracted too fast, instable cavities might 
form.



“When 30% of the mineral has been extracted, the fracture front has 
reached the top”

Drag bodies



Important questions:

-How to avoid extracting 
poor mineral at the top.

-How drag bodies evolve.

-How drag bodies interact.

-How to optimize drag 
bodies size.

Scientific basis to make decisions!! Avoid common believes.
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Modeling drag bodies interactions

Valves
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-Grinding machine.
-Flow optimization.
-Size selection.

Poor efficiency: about 5%.
80% of total energy requirements in 
the mine goes to grinding processes.

Applications II
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Vibrated granular materials

Surface Waves on the granular layer:
Fluid like behavior (Umbanhowar, Swinney)

Side view
Top view

Parametric instability at f/2
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Fine Powders: air effects
A cartoon, J. Duran
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Fine powders.

gAf /4 22π=Γ
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CtefEinj =−Γ∝ 22 /)1(

Stable droplets

Unstable droplets

LDbf VDtft //)1( =>>−Γ≈
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)( cDVVsExperiment Γ−Γ=⇒ αη
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A simple picture.

-Scaling:

ηρηππρ 18/3~6/ 23 gDVVDgD DD =⇒- Stokes flow:

- Darcy law:
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Conclusions:
-A simple idea captures the main features of wetting droplets

-To a more elaborate description:
-Vary particles diameter.
-Full characterization of gas flow.

Fluid viscosity effect 



Impulsion transmission in elastic beads
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Nonlinear behavior of spherical contacts
under elastic deformation: Hertzian contact
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Back to Newton time!



A chain of identical beads (mass m) is a dispersive medium

Basic concepts
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Dispersion relation for acoustical mode

Basic concepts

corresponds to
the sonic vacuum limit

00 =F

)sin(qRcωω =

qR2/π+0

Forbidden band

6/1
0Fcg ∝

6/1
0Fc ∝ω

Acoustical modes propagate 
along chains of force, 
where 00 ≠F
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Basic concepts

Sonic vacuum, but nonlinearity + dispersion = Solitons

A chain of elastic beads 
supports acoustical wave 
and also solitary waves
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e.g. KdV
equation
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Modeling equation: V. Nesterenko 1984 
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In summary

Basic concepts

00 ≠F 6/1
0Fcg ∝

No acoustical wave but our system exhibits
a solitary wave solution (a mexican-hat profile)

Acoustical modes
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Qualitative agreement with previous 
experimental works.  For instance, V. 
Nesterenko et al and E. Falcon et al.



Experimental setup
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Sensor response
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Monodisperse chain of beads
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Monodisperse chain of beads
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Monodisperse chain of beads
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Alternative method to 
RUS to measure Young 
modulus of small samples. 



Monodisperse chain of beads

Force 
at wall

Force in chain
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Introducing dissipation
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Effect of the gravity

0 0.5 1 1.5 2

0

10

20

F
or

ce
 (N

)

α = 0.0

0 0.5 1 1.5 2

0

10

20

Time (ms)

Fo
rc

e 
(N

)

α = 20

Gravity introduces a gradient of static force

α

ω
Forbidden band

qR
2/π0 1

ω
Forbidden band

qR
2/π0 1

Chicago, October 2004



0.0 0.5 1.0 1.5 2.0 2.5

0

50

100

F
or

ce
 F

 (
N

)

← 0

(a)

0.0 0.5 1.0 1.5 2.0 2.5

0

50

100

F
or

ce
 F

 (
N

)

1
2

3 4
R

(b)

0.0 0.5 1.0 1.5 2.0 2.5

0

50

100

F
or

ce
 F

 (
N

)

1
2

3 4
R

(c)

0.0 0.5 1.0 1.5 2.0 2.5

0

50

100

Time t (ms)

F
or

ce
 F

 (
N

)

1
2

3 4

(d)

Impedance mismatch

Chicago, October 2004

Almost all the energy is 
transmitted.



perspectives

-Good agreement between experiments and 
theory under academics configurations.
Need a more accurate theory, including 
dissipation
-Study of a disordered chains, and few others 
configurations.
-Two and three dimension effects: disorder, 
shock front?
- Shape effects, Hertz is no longer valid but 
solitary waves might remain; introduce defect 
contact to check.
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In 3D, acoustical modes 
propagate along chains
of force, where 00 ≠F

,regions of 
solitary wave propagation.

00 =F
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Conclusions.

Updated version of the manual of granular 
material exhibit. 

Works of 10 years old kids
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“Sound in sand”, Liu, Nagel, PRL 68(15), April 1992.

“Spatial patterns of sound propagation in sand”,

Liu, PRB 50(2), July 1994.

φυτ 3 ≈ Effect of 1D chain of force

Extension to 3D medium
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“Ultrasound propagation in externally stressed granular media”,

Jia, Caroli, Velicky, PRL 82(9), March 1999.

The coherent part of the 
signal follows Hertz law

Coherent 
ballistic 

signal

Multiply 
scattered 
sound

Extension to 3D medium
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