

Materials far from equilibrium Universidad de Santiago de Chile.

•Cell mechanics (R. Bernal, Pramod P. Germany.)

•Dynamics of vibrated grains. Droplets forming (with L. Caballero)

•Gravity flows and segregation Exp. and Num. studies, with F. Vivanco

Solitons and sound in granular materials

•Mechanical properties:

(with S. Job)

- •Speckle for displacement field (with E. Hamm)
- •Acoustical methods for soft materials, J-J. Ammann.

•Mechanics of bioceramics with (E. Hamm, V. Apablaza.)

•Cristal growth (with J. Pavez) Atomic force microscopy techniques

•Wrinkling in elastic membranes: (with J.C. Geminard)

•Crystal growth: Atomic Force microscopy:

Tips: N₄Si₃ ; 0.06 y 0.58 N/m.

Lateral resolution: 1-5 nm. Vertical resolution: <0.5 Å. Thermal noise!

$$z_T = m_S \frac{l_T}{3d_S}$$

Tip substrate interactions: Force Vs distance

*Tapping for soft materials

Crystal growth: In situ experiments. (J. Pavez).

Injection of fresh solution and direct observation of the surface time evolution.

× 1.000 µm/div Z 60.000 nm/div Ongoing research.

-Calcium Carbonate dissolution and growth, afm in situ.

1.5 nm

0.0 nm

Unsaturated solution

Dissolve-matural structures in situ to reveal natural growth processes.

Supersaturated solution

Effects on surface growth:

-Rough transition of steps due to impurities.
-Elastic effects, large distortions due to inclusion of large molecules.
-Sulfated macromolecules as in J. L. Arias talk: Macroscopic shapes, kinetics...

System Valine/BSA: Composite Nano sheet (H. Coelfen)

What selects the nano sheets thickness?

System Valine/BSA: growth at atomic scale

With **BSA**

Two dimensional nucleation of islands, screw dislocations. Model TLK. Step roughness on screw dislocations depends on organics molecules

Effect of BSA: Difficulties at high concentration of BSA. Several T quenching

Friction in progress

It seems adapted to minimize bending.

Egg shells

Package: not clear what optimizes

Question: The role of the intermediate structures on the mechanical properties.

Nacre shells

High fracture resistance.

Ping pong shells: mimic egg shells

Contact zone in white

The contact region is unstable: bending and stretching competition

Egg Shells: Elasticity

The egg shell fracture is likely to be a result of an instability which is sub critical at constant force.
Theory predicts a higher value of deformation for the instability threshold.
Threshold is independent on Young modulus.

-Threshold is independent on Young modulus.

Isotropic solid

Nacre

Speckles methods for small samples

Plastic flows applications: granular materials

$$A_{x}^{+} - A_{x}^{-} = 2\frac{\Delta l}{M}\varepsilon_{xx}\sin\vartheta_{s}$$
$$\Rightarrow \varepsilon_{xx} = \frac{M}{2\Delta l\sin\vartheta_{s}}\left(A_{x}^{+} - A_{x}^{-}\right)$$

Membranes and cell mechanics

Elastic membranes under axial tension:

Experimental results:

Conclusions: -Wrinkle length not good for force measurements.

-Wrinkle amplitude much better

Glass transition in polymers films, Young modulus, Grenoble

Linnix interferometer.

-0.02

0

0.02

0.04

0.06

Nanometric elastic membranes Thickness and Young modulus

$$h_{membrane} = \frac{\lambda}{2n} \delta \approx 0.1 \mu m$$

Membrane tension

• The membrane is under tension.

$$\Delta P = \frac{2}{R} \left(\gamma_{L-M} + B \frac{\delta l}{l_o} \right) \quad x = \frac{r}{R}$$
$$\Delta P = \frac{2}{r} \left(\gamma_{L-M} - B \right) x + \frac{2B}{\alpha r} \sin^{-1}(x)$$

 $B=Eh \longrightarrow E \cong 5MPa$

Mechanical properties of axons (R. Bernal) Bending of axons by the effect of a viscous force

Axons response to tension

Active regime: T < Tl; retraction T > Th; elongation Passive regime: Viscoelastic solid, Tl < T < Th

Drug effects Lat-A: Actin depolym. Nocodasole: Microtub. depolym

New Group: Mechanics of Complex Materials: Theory: F. Lund, M. Clerc, E. Tirapegui, P. Cordero, D. Risso and R. Soto. *Experiments:* N. Mujica, J-J. Ammann, S. Rica, and F. Melo.

Main goals for the next five years I:

Granular Materials.

-Development of numerical simulations in three dimensions. -Strong interaction experiments, theory and numerical simulations. Specific problems are convection, segregation, avalanches, rarefaction fronts, fluidized beds, sound propagation and **flows of importance in mining processes.**

Mechanical properties of complex materials.

-Sound materials interactions: Acoustical interaction in suspensions, sound dislocations interactions, dynamic of phase transitions, sound emission by bursting bubbles; volcanoes.

-Optic and acoustic speckles: Elastic properties of biomaterials (optic) and soft materials (acoustic), for instance, fruits.

-Biomechanics: Membranes, axons and molecular motors?.

Main goals II:

Biomaterials growth: Atomic force techniques.

How biomolecules modify crystal growth: Sulfated macromolecules provided by J. L. Arias group.

Super saturation effects:

-Elastic effects: large distortions of the crystal due to macromolecules inclusions.

-Electric field effects: anisotropy, large K contrast. -Gradient of electric field effect, might favor an increase of local

concentration of some species.