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From Classical Stat Mech to Quantum to RG

2

All of quantum mechanics on one slide

Heisenberg representation  P(t)=e−iHt P eiHt..     Let   T(t) = e−iHt  

Average

Two Times

For grand canonical ensemble use T(t)= exp[−i(H-μN)t]

1234567890-=
θωερτψυιοπ[]∴
ασδφγηϕκλ;∏
ζξχϖβνμ,./

<Q> =[trace T(−iβ) Q]/ Z( β)

<Q(s) P(t)> =[trace T(−iβ) Q(s) P(t) ]/ Z( β)

Partition Function  Z(β) =  trace T(−iβ)=Σ exp(−βεα)α
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Nearest Neighbor Interactions in Stat Mech on a One-
Dimensional Lattice
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Imagine that we wished to understand a problem involving nearest neighbor 
interactions one a one dimensional lattice which looks like

1 2 3 4 5 N...

U(q1) U(q2) (q4-q5)2

The variables at the different lattice sites are q1, q2, ......,qN.  The statistical weight is a product of 
terms depending on variables at the nearest neighboring lattice sites of the form w(qj,qj+1) so that 
the entire calculation of the partition function is*

Z =
∑

q1,q2,···,qN

exp[w(q1, q2) + w(q2, q3) + · · · + w(qN−1, qN ) + w(qN , q1)]

Notice that we have tied the two ends of the lattice to one another via a coupling 
w(qN,q1).  We have essentially used periodic boundary conditions.  This calculation 
can be converted into a quantum mechanics calculation using a quantum 
mechanical operator, T, defined by its matrix elements  

<q|T|p>=   exp[w(q,p)]

Now substitute this expression into the partition function calculation.  We then have, 

Z =
∑

q1,q2,···,qN

exp[w(q1, q2) + w(q2, q3) + · · · + w(qN−1, qN ) + w(qN , q1)] iii.1

* We shall not describe the nearest neighbor problem in terms of a statistical mechanical Hamiltonian since we are saving the word 
“Hamiltonian” for the quantum problem which will replace it.
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From Classical to Quantum:

so that Z= trace TN

In order to get something familiar, imagine that T is an exponential of a Hamiltonian, 
specifically T=exp(-τH)), where H is a Hamiltonian defined in terms of w.  In terms of 
matrix elements 
<q|T|p>=   exp[w(q,p)]= <q|exp(-τH)|p>

Z =

∑

q1,q2,···,qN

< q1|T |q2 >< q2|T |q3 > · · · < qN−1|T |qN >< qN |T |q1 >

If you recall the definition for matrix multiplication, 

< q1|TS|q3 >=

∑

q2

< q1|T |q2 >< q2|S|q3 >

you will see at once that the partition function is    Z =

∑

q1

< q1|T
N |q1 >

In fact, T is what we  called before T(-iτ).   If we write the trace in terms of the eigenvalues, εα, 
of H we have

iii.2

iii.3so that Z= trace T(-iτ)N =trace e−NτH= Σ exp(−Nτεα)α
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Summary
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or in a more compact notation

        Z= Trace{q} exp[W{q}] = trace exp[-HτN]

Note that we use the word “trace” to represent both a quantum and a 
statistical mechanical sum. The trace in equation 4.10 is a statistical sum.  
The first Trace in equation iii.4 is a statistical mechanical sum, the second is 
a quantum mechanical trace. We use a capital “T” when we sum over many 
variables and a lower case one when we sum over only one or a few. 

 The point of the argument is that they have a direct translation into one 
another:  Every quantum mechanical trace can be converted into a one-
dimensional statistical mechanics summation and vice versa.   

iii.4
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The basic idea about going up and back 
between the two disciplines is due to 
Feynman, and his invention of the path integral.   
As far as I know, Feynman never quite said the 
sentence written in blue.  The point was 
pursued and made explicitly by Kenneth 
Wilson, and used in his invention of the 
modern renormalization group.  I’ll come back 
with more about that later.

Richard Feynman 

Every quantum mechanical trace can be converted into a one-dimensional statistical 
mechanics problem and vice versa.  More generally, d dimensional quantum 
mechanics converts to d+1 dimensional stat mech.  (Here, 0 dimensions of 
quantum becomes 1 of statistical mechanics ).

Feynman showed how to convert problem of quantum mechanics into a path integral. We have 
essentially put his path on a one-dimensional lattice.



Perimeter Institute Lecture Notes on Statistical Physics  part III: From Quantum to Ising to RG  Version 1.6 9/11/09   Leo Kadanoff

Feynman’s case: particle mechanics
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The simplest and most fundamental problem in quantum theory is a particle in a one-
dimensional potential,  H=p2/(2m) +U(q), where p and q obey  [p,q]=-i ħ.   However, we 
shall stick with units in which ħ=1.
We assert, without proof, that the exponential of this operator has the matrix element   

iii.6

for small values of τ.   Because τ is small, q and q′ are necessarily close to one another.  For 
that reason, we can replace U(q) by U(q′) or by [U(q)+ U(q′)]/2 in the analysis that follows. 
(These choices are close to equivalent, but they are not the same because p and q do not 
commute.) 

Calculate the matrix element of exp[-τp2/(2m)] between position eigenstates. 

Imagine that we wished to know the eigenvalues of the Hamiltonian, H.   We could, for 
example, numerically calculate  the integral of products of matrix elements as given above.  
As the number of steps times τ goes to infinity we would pick out the lowest eigenavlue as 
the leading term in   
             

    

€ 

traceT(iτ)N = trace e−NτH = e−Nτεα

α

∑

This approach provides a powerful method for both numerical and analytic approaches to 
quantum problems.  However, I’ll do a simpler case here.

<q|T(-iτ)|q′>=<q|exp[-τH]|q′> = exp[-m(q-q′ )/(2τ)-τU(q)]           iii.5
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The Ising Linear Chain
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This kind of two by two system is generally analyzed in terms of the Pauli 
matrices which are the four basic matrices that we can use to span this two by 
two space.  They are 

In going up and back between the notation of equations (4.17) 
and (4.18) we have to think a little. In (4.17), we interpret σ and 
σ’ as eigenvalues of the matrix τ3.   Any two by two matrix, M, 
can be written in terms of the eigenstates corresponding to these 
eigenvalues: 

__
eK

__
e -K

linear chain
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The transfer Matrix
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A useful form for these Pauli matrices is 

 these matrices have a very direct physical meaning. 
The matrix τ3 is diagonal in the σ-representation and represents 
the spin. Conversely, τ1 has only off-diagonal elements. It is an 
operator whose effect is to change the σ-value. 

The matrix element of the transfer matrix, T, is equal to 
eK when σ = σ’ and equal to e−K otherwise. In 
symbols, 

= eK 1 + e−K τ1

Here the matrices in bold are the ones defined in eq. 4.19b.   We can 
also write the result as an exponential, T=exp(-H) where  
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Dual Couplings
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The quantity    is said to be the dual of K. For a simpler notation, we 
call this function by another name so that the dual of K is D(K)  This 
name implies in part that the function D(K) has the property that if it 
is applied twice that you get precisely the same thing once more:     

How would I find the  function D(K)? 

This function has the property that when K 
is strong its dual is weak and vice versa.   This 
property has proven to be very important in 
both statistical physics and particle physics.  
Often we know both a basic model and its 
dual.    Often models are hard to solve in 
strong coupling.  But the dual models have 
weak coupling when the basic model has 
strong coupling.   So then we get an indirect 
solution of the basic model.

D(D(K))=K      or  D-1(K)=D(K)

K= D(K)=[ln (tanh K)]/2        K0= [ln( sinh 2K)]/2~~
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Solution of the one-dimensional Ising model
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From equation 4.20, we find that the partition function of the one-dimensional Ising model is

 

What quantum mechanics problem have we solved?
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More about quantum from the Long Chain
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We should be able to say more about quantum problems based upon the analysis of 
the long chain.   For example let us imagine that we wish to calculate the average of 
some quantum operator, X(q), which happens to be diagonal in the q-representation.    
The text book goes through a long song and dance to prove a rather obvious result.  
You have seen that the trace in equation 4.10 pushes us into a sum over energy 
states, and if N is very large that sum reduces to a projection onto the ground state 
of the system. Specifically, 

becomes Z=exp(-τε0)

So if we insert an X, for any any operator X, in that sum the result should give what happens 
to that X in the ground state, specifically   

(1/Z) Trace {q}  exp[W{q}] X= <0| X(q) |0>

In this way, we can use statistical mechanics to calculate the average of any operator in the 
ground state.  If we do not take N to infinity, we can do the corresponding calculation to 
calculate the average of any operator at a inverse temperature (β- value) equal to N τ.    

By playing with the times in an appropriate fashion, we can even calculate time-dependent 
correlation functions in the ground state or in a finite-temperature state.  
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Statistical Correlations in a Long Chain
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We should be able lots about the statistical mechanics of a the long chain with Ising 
style interactions.   For example, let us calculate the average of the jth spin on a long 
chain or the correlations among the spins in the chain.    Start from 

Here Tr means “sum over all the N spin-values”.   We use periodic boundary conditions. In 
this equation all the σ’s are numbers, and they commute with each other. 

We can make the calculation easier by replacing all the couplings by their expressions in 
terms of Pauli spins matrices giving these three calculations as, first,    

≈   (2 cosh K)N

    

€ 

Z = Tr exp[ Kσ j+1j=1

N
∑ σ j ]

< σ k >= (1/ Z)Trσ k  exp[ Kσ j+1j=1

N
∑ σ j ]

< σ kσ k+r >= (1/ Z)Trσ kσ k+r  exp[ Kσ j+1j=1

N
∑ σ j ]

The ≈ is an approximate equality which holds for large N.   Note that in this limit the 
term with eigenvalue of τ1 =1 dominates because the dual coupling is positive.    

~

Z=traceτ ∏ exp (K0 + Kτ1) = traceτ exp[N (K0 + Kτ1)] 
N

j=1

~ ~~ ~

= (2 cosh K)N+(2 sinh K)N  
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Average magnetization in a Long Chain
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We know the answer: the system has full symmetry between spin up and spin 
down so that the average magnetization must be zero.   Nonetheless, let’s 
calculate

To evaluate the last expression we must take diagonal matrix elements of τ3 between 
eigenstates of τ1. Both such matrix elements are zero.  why? Because τ3 acts to change the 
value of τ1 so that τ3 |τ1=1> = |τ1=−1> so that  <τ1=1| τ3 |τ1=1> = <τ1=1| |τ1=−1>=0.
 Therefore the entire result is zero and the average has the value zero, as expected. 

<σj> =0 

At zero magnetic field, the magnetization of the one-dimensional Ising model is zero. 
Thus, this Ising model has no ordered state.  In fact no one-dimensional system with 
finite interactions has one.   This model is always in the disordered phase at all finite 
temperatures.  

Z<σj> = traceτ {exp [-H τ(j-1)] τ3  exp [-H τ(N-j+1)] }
Since we can rearrange terms under a trace, as trace (ab)=trace (ba), this 
expression simplifies to
           = traceτ { τ3  exp [-H τN] }= traceτ { τ3  exp [-(K0+K τ1 N] }
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Correlations in Large N limit

15

Z <σjσj+r>= traceτ {e-(j-1)H  τ3 e-rH  τ3  e-(N-j-r+1)H },      for large N

Since we can rearrange terms under a trace, as trace (ab)=trace (ba), this expression simplifies to

 (traceτ e-NH) <σjσj+r>= traceτ {e-(N-r)H  τ3 e-rH  τ3 },      so that 

* Note how the ordering in space converts into an ordering in time.

We start from*

Let N be large.  Z simplifies to  Z = exp(NK̃0 +NK̃) since the τ1=1 term dominates the trace 

iii. 7 <σjσj+r>≈  exp[-2 Kr] ,      for large N
~

exp[KN] <σjσj+r>≈ {exp[KN] exp[-2 Kr] },      for large N
~ ~ ~

The K0 term is the same on both sides of the equation.  It cancels.  
For large N, the τ1 =1 term dominates both traces.  Since the effect of 
τ3 is to change the eigenvalue of τ1  this result is

Consequently

The result is that correlations fall off exponentially with distance, with the 
typical falloff distance, denoted as ξ  ,   being the distance between lattice 
points (usually called a) times 1/(2D(K))=1/(2K).~
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Correlation Length

16

< σ jσ j+r >= exp(−2rK̃)

ξ/a→ 1/(− ln(2K)) as K→ 0

1/(2K̃) = ξ/a→ exp(2K)/2 as K→ ∞

Hideki Yukawa

The result is that correlations fall off exponentially with distance, 
with the typical falloff distance, denoted as ξ, being the distance 
between lattice points (usually called a) times 1/(2D(K))=1/(2K). 
This falloff distance is very important in field theory, particle 
physics, and phase transition theory.  In the latter context it is 
called the coherence length.   It is also called the Yukawa distance 
because it first came up in Hideki Yukjawa’s description of 
mesons.  Here, in the one dimensional Ising model,  we have a 
very large coherence length for large K.    Specifically

~

while is very small in the opposite limit of small K.

ξ = correlation length= a/[2D(K)] =a/(2K)
~

Large correlation lengths, or equivalently small masses, play an important role in statistical 
and particle physics since they indicate a near-by phase transition or change in behavior.

=exp (-ar/ξ)
Here ar is distance between the sites of the two spins. 
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Bloch Walls in 1 d 
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In the Ising model at large values of the coupling, K,  the spins tend to line up.

However, with a cost in probability exp(-2K) a whole region might flip its 
spins, producing a defect called a Bloch wall

This kind of defect produces the decay of correlations in the 
Ising model at low temperatures.  In any long Ising chain, many 
such defects will be randomly placed and ruin any possibility 
of correlations over infinitely long distances.

This is the simplest example of what is called a topological excitation, a defect 
which breaks the ordering in the system by separating two regions with 
different kinds of order.  Since ordering is crucial in many situations, so are 
topological excitations.     

Notice that, at low temperatures,  this kind of excitation is much more likely than a 
simple flip of a single spin.  The wall costs a factor of exp(-K); the flip costs exp(-2K).
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Renormalization for 1D ising, 
following ideas of Kenneth Wilson, this calculation is due to David Nelson and myself

18

Rearrange calculation: Rename spins separated by two lattice sites:  let μ1=σ1; μ2=σ3, 
μ3=σ5, ....; and sum over every other spin, σ2 , σ4 .....

Z =
∑

σ1,σ2,···

exp(WK{σ}) =
∑

σ1,σ2,···

exp(Kσ1σ2 + Kσ2σ3 + · · ·)

Note that sum over σ2 , σ4 .....  generates only nearest neighbor interactions for 
the μ’s

w´{μ}= const + K´ μ1 μ2 + K´ μ2 μ3 + ....    
K´ describes same system as before, with a new separation between lattice sites, 
which is twice as big as the old separation.   Since the physical system is the 
same, physical quantities like the correlation length and the entropy are 
unchanged, but their description in terms of couplings and lattice constants has 
changed.   In particular, the new lattice spacing is a´ =2a, but the correlation length  
is exactly the same ξ´ = ξ.   Since we know that the correlation length is given by

ξ = a/[2D(K)],   we know that the new coupling obeys a/[2D(K)] = a´/[2D(K´)] 
we find that the new coupling obeys D(K´) = 2 D(K) before we do any detailed 
renormalization calculations.  Since D is a decreasing function of K we know that 
the new, renormalized, coupling is smaller than the old one. 

Z =
∑

µ1,µ2,···

∑

σ2,σ4,···

exp(Kµ1σ2 + Kσ2µ2 + · · ·) =
∑

µ1,µ2,···

exp(w′{µ})
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Renormalization Calculation

19

Z =
∑

µ1,µ2,···

∑

σ2,σ4,···

exp(Kµ1σ2 + Kσ2µ2 + · · ·) =
∑

µ1,µ2,···

exp(w′{µ})

So the new nearest neighbor coupling term is given by 

exp(K ′

0 + K ′µ1µ2) =
∑

σ2

exp(Kµ1σ2 + Kσ2µ2)

which then gives us exp(K0´  +K´)= e2K +e-2K  and exp(K0´  - K´)= 2
so that e2K´ = cosh 2K.

The renormalization calculation tells us what we know already, namely that the one-
dimensional model has no phase transition.   A phase transition is a change in the long-
ranged structure of correlations in a system.  Here the couplings gradually weaken as 
you renormalize to longer and longer distances.   All possible values of the coupling 
reduce to weak couplings at long distances.  The system is always in the weak coupling 
phase. So there is no phase transition. 

iteration
number

K
4 3 2 1 0

Kflow

K=0

fixed pointAfter many iterations coupling 
approaches fixed point at K=0
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Ising Model in d=2
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−H/(kT ) = K
∑

nn

σrσs + h
∑

r

σr
σr=±1

square lattice
Onsager calculated 
partition function and 
phase transition for this 
situation

r s

s

s

s

Nearest neighbor structure
s’s are nearest neighbors to r
Bonds=exp(Kσσ´) connect 
nearest neighbors
 

nn indicates a sum over 
nearest neighboirs 
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High Temperature Expansion
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Nearest neighbor structure
Bonds=exp(Kσσ´) connect nearest neighbors
Bond=cosh K +σσ´ sinh K =cosh K[1+ σσ´ tanh K]

Z=(2 cosh K cosh K)N < products of [1+ σσ´ tanh K] >
   = (2 cosh K cosh K)N  sum < products of (tanh K)M > 
                                     for nonzero terms, when there are N sites

To get a non-zero value each spin must 
appear on a even number of bonds. You then 
get the lattice covered by closed polygons. 

With a lot of hard work one can calculate a 
series up to ten or even twenty terms long 
and estimate behavior of thermodynamic 
functions from these seres 
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Low Temperature Expansion
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Nearest neighbor structure
Bonds=exp(Kσσ´) =eKδσ,σ´  +e-Kδσ,-σ´

Bond =eK[δσ,σ´  +e-2Kδσ,-σ´]
We draw these bonds differently from 
the high T bonds.  We draw them 
rotated 90 degrees in comparison to 
the other bonds.

Z=2(eK)N < products of [δσ,σ´  +e-2Kδσ,-σ´] >
   = 2eNK  sum < products of (e-2K)M > 
                                     for nonzero terms

To get a non-zero term, assign a value to one 
spin.  Then every time you cross a red line, 
change the spin-value to the opposite.  Your 
valid pictures become a series of  closed red 
polygons.
With a lot of hard work one can calculate a 
series up to ten or even twenty terms long 
and estimate behavior of thermodynamic 
functions from these seres 

note e-2K

= tanh K
~
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Duality Hendrik Kramers and Gregory Wannier
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Since the two expressions both give Z we get a relationship beteen a high 
temperature theory of Z and a low temperature one.  We write our sum of 
products as  exp[Nf(.)] where the .  can be either exp(-2K) or tanh K depending 
on which expansion we are going to use.   We then have 
 ln Z = N[K] +N f[exp(-2K)]  = N ln [ 2 cosh K cosh K] +N f[tanh K]
Let us assume that there is only one singularity in ln Z as K goes through the 
interval between zero and infinity.  Since tanh K is an increasing function of K and 
exp(-2K) is a decreasing function of K, the  singularity must be at the point   
where the two things are equal   
tanh Kc = exp(-2Kc).  
After a little algebra we get          sinh 2Kc=1           
which is the criticality condition for two-dimensional Ising model.  This 
criticality condition was later verified by Onsager’s exact solution of the 2d 
ising model. 

1234567890-=
θωερτψυιοπ[]∴
ασδφγηϕκλ;∏
ζξχϖβνμ,./

Further we might notice that ln Z must have a form of singularity in which the 
singular part of the partition function is even about this point.

http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers
http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers
http://en.wikipedia.org/wiki/Gregory_Wannier
http://en.wikipedia.org/wiki/Gregory_Wannier
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Specific Heat = d2 ln Z /d T2

24

Further we might notice that ln Z must have a form of singularity which is even about 
the critical value of the coupling.

22. P. Nordblad, D.P. Belanger, A.R. King, V. Jaccarino and H. Ikeda., Phys. Rev. B 28. 278 (1983).   
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Renormalization for d-2 Ising model
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fewer degrees of freedom 
produces “block renormalization”

Z=Trace{σ} exp(WK{σ})

1234567890-=
θωερτψυιοπ[]∴
ασδφγηϕκλ;∏
ζξχϖβνμ,./

Imagine that each box in the picture has in it a 
variable called  μR, where the R’s are a set of new 
lattice sites with nearest neighbor separation 3a. Each 
new variable is tied to an old ones via a 
renormalization matrix G{μ, σ}= ∏ g(μR,{σ})
where g couples the μR to the R

σ’s in the corresponding box.  We take each μR to 
be ±1 and define g so that,    
Σμ g(μ,{s}) =1.    For example, μ might be 
defined to be an Ising variable with the 
same sign as the sum of σ’s in its box.   
Now we are ready. Define

exp(W´{μ})= Trace{σ} G{μ, σ} exp(WK{σ})

Z=Trace{μ} exp(W´{μ})

If we could ask our fairy god-mother what we wished for now it would be that we 
came back to the same problem as we had at the beginning: W´{μ}=WK´{μ}

A. Pokrovskii & A. Patashinskii, Ben Widom, myself, Kenneth Wilson.
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Renormalization:  a --> 3a =a´    WK{σ} --> WK´{μ}    Z´ =Z      K´ =R(K)

26

Scale Invariance at the critical point: -->   Kc =R(Kc)
Temperature Deviation: K=Kc+t      K´=Kc+t´
if t=0 then t´=0
ordered region (t>0) goes into ordered region (t´>0) 
disordered region goes into disordered region
if t is small, t´=bt.      b=(a´/a)x  defines x.   b can be found through a numerical calculation.        

coherence length:  ξ=ξ0 a t-ν    2d Ising has ν=1;  3d has ν≈0.64....  
ξ=ξ´          ξ0 a t-ν   =  ξ0 a´ (t´)-ν 

so ν=1/x 

number of lattice sites:     N =Ω/ad     N´ =Ω/a´d 

N´ /N= ad / a´d   = (a´/ a)-d

!≅#∃%⊥&∗()_+

ΘΩΕΡΤΨΥΙΟΠ[]∴
ΑΣΔΦΓΗϑΚΛ;∏
ΖΞΧςΒΝΜ,./

Free energy:    F = non-singular terms +Nfc(t)= F´= non-singular terms +N´fc(t´)
fc(t)  = fc0 tdx 

Specific heat:     C=d2F/dt2~ tdx-2     form of singularity determined by x

One can do many more roughly analogous calculations and compare with experiment and 
numerical simulation.   Everything works!

However notice that this is not a complete theory.  We have no way to find x from theory.
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renormalizations of couplings
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stable fixed point

unstable fixed point

024 3

432 60

iterations

iterations

flow

Kc0

coupling, K
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Homework:

28

Add a term in Σj (h σj ) to the weighting function, W, for the one dimensional Ising 
Hamiltonian.  Find the value of the average spin in the presence of a small magnetic field h.  
Define the magnetic susceptibility as the derivative of the magnetization with respect to h at 
fixed K.   Show that this susceptibility diverges as K goes to infinity.  Shows that it is 
proportional to a sum of fluctuations in the magnetization.  

The three-state Potts model is just like the Ising model except that its “spin” variable σj 

can take on three values  = -1,0, 1.  It has w(σj, σj+1 ) =K if the two variables are the 
same and zero otherwise.    Find the partition function and coherence length of the one 
dimensional model.  How does the renormalization work for ? 

 What is the critical temperature of the three-state Potts model on the square lattice in 
two dimensions?  


