The physics of granular materials

F. Melo

Universidad de Santiago de Chile
and
CIMAT

Collaborators:
Leonardo Caballero
Stephan Job
Francisco Vivanco
Eugenio Hamm
From a grain to avalanches: Exhibit at the Science museum of Santiago

-Dilation.
-Hopper flows.
-Waves in vibrated layers.
-Droplets of fine grains: wetting?
-Sound in chains of beads.

Newton, Hertz, Faraday, Reynolds, Bagnold.
Ottino, Nagel, Jaeger, Umbanhowar and many others.
Dilatancy in a granular material: Reynolds 1885

This explain what happens when walking on wet sand.
Walking on sand: a model experiment

Cell size: 1cm deep, 2cm wide, 5cm long

Pushing object: 3mm
Speckles method for displacements

Before displacement

After

Mean Displacement Field for Cylindrical Indentor over 100 displacements

Correlation

Scanning
\[
\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = \omega
\]

\[
\frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)
\]

\[
\omega = \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y}
\]
A rough estimate of the free surface deflection.

Mass conservation:

$\delta h = \frac{R}{\xi - R} \delta \zeta$

$h(x, \xi) = Cte + R \tan \phi \log\left(\frac{\xi - R}{x - R}\right)$

Check next vacations!.

Chicago, October 2004
Hopper flows: How hourglass works
In a fluid

\[u(x+l) \]

\[\ell \]

\[u(x-l) \]

vertical transfer of momentum/area time

\[
\sigma \sim \frac{1}{6} n \bar{v} [mu(x + l) - mu(x - l)] \]

\[
\sigma = \frac{1}{3} n \bar{v} ml \left(\frac{du}{dx} \right) \]

\[
\eta = \frac{1}{3} n \bar{v} lm \]

“Thermal speed” \(\sim c \)
In a granular material

\[\sigma \sim \frac{\rho_p D^3}{(\delta + D)^2} \frac{\Delta u}{t_c} \]

\[
\frac{\rho_p D^3}{(\delta + D)} \frac{1}{t_c} \left(\frac{\Delta u}{\delta + D} \right) \sim \frac{\rho_p D^3}{(\delta + D)} \frac{1}{t_c} \left(\frac{du}{dy} \right)
\]

\[t_c \sim \frac{\delta}{\bar{v}} \]

\[\sigma \sim \frac{\rho_p D^3}{(\delta + D)} \frac{\bar{v}}{\delta} \frac{du}{dy} \]

but

\[\bar{v} \sim \Delta u \Rightarrow \sigma \sim \left(\frac{du}{dy} \right)^2 \]

Bagnold 1941
Force fluctuations might dominate flows

In general there is no intrinsic thermal speed:
- Poor separation scale: Hydrodynamic difficult
- Random fluctuations depend on energy injection
- Absence of well adapted experimental methods.

-Free falling arch?
- Grains accelerate over a distance D:

$$V \propto \sqrt{gD}$$

For a fluid
$$V \propto \sqrt{gH}$$

For granular materials
$$V \propto \sqrt{gD}$$

Chicago, October 2004
Applications I: Underground copper mining
Chile largest copper producer

Chicago, October 2004
The standard procedure for underground mining

Cut hoppers
The starting point

“Induce fracture initiation”
The common believe

As the mineral is extracted the fracture front propagates…
If the mineral is extracted too fast, instable cavities might form.
“When 30% of the mineral has been extracted, the fracture front has reached the top”
Important questions:

- How to avoid extracting poor mineral at the top.
- How drag bodies evolve.
- How drag bodies interact.
- How to optimize drag bodies size.

Scientific basis to make decisions!! Avoid common beliefs.
Modeling drag bodies interactions
- Grinding machine.
- Flow optimization.
- Size selection.

Poor efficiency: about 5%.
80% of total energy requirements in the mine goes to grinding processes.
Vibrated granular materials

Surface Waves on the granular layer:
Fluid like behavior (Umbanhowar, Swinney)

Parametric instability at f/2

Chicago, October 2004
Fine Powders: air effects

A cartoon, J. Duran

Steady state

Increasing size

Chicago, October 2004
Fine powders.

\[\Gamma = 4\pi^2 f^2 A / g \]
$$E_{\text{inj}} \propto \frac{(\Gamma - 1)^2}{f^2} = Cte$$
Experiments $\Rightarrow V = V_D \eta \alpha (\Gamma - \Gamma_c)$
A simple picture.

- Stokes flow: \[\pi \rho D^3 g / 6 \sim 3\pi D \eta V_D \Rightarrow V_D = \rho g D^2 / 18 \eta \]
 Limit speed

- Darcy law: \[V = \nabla P \left(D^2 \phi / 150(1 - \phi)^2 \eta \right) \]

\[V_L = g \rho \left(D^2 \phi / 150(1 - \phi)^2 \eta \right) \]

\[t_L = V_L / g \] Relaxation time

- Scaling:

\[t_{ff} \approx \gamma (\Gamma - \Gamma_c) / f \]

\[t_D = D / V_L \]

\[g_x = g \sin(\alpha); \]

\[V = g \tan(\alpha) t_D t_{ff} f \Rightarrow V = g D \tan(\alpha) \gamma (\Gamma - \Gamma_c) / V_L \propto \rho \eta / D \]
Conclusions:
-A simple idea captures the main features of wetting droplets

-To a more elaborate description:
 - Vary particles diameter.
 - Full characterization of gas flow.
Impulsion transmission in elastic beads

Nonlinear behavior of spherical contacts under elastic deformation: Hertzian contact

\[a^2 = R^2 - (R - \delta)^2 \approx 2R\delta \]

\[F_0 \sim ES(\delta/a) \sim E\delta a \sim E\delta^{3/2} \]
A chain of identical beads (mass m) is a dispersive medium.

$$ k_{eq} = \frac{\partial F_0}{\partial \delta} \propto F_0^{1/3} \Rightarrow \Delta F_0 \approx k_{eq} \times \Delta \delta $$

$$ \omega(q) = 2\sqrt{k_{nl}/m} |\sin(qR)| $$

Dispersive medium: $c_\varphi \neq c_g$
Dispersion relation for acoustical mode

\[\omega = \omega_c \left| \sin(qR) \right| \]

\[\omega_c \propto F_0^{1/6} \]

\[c_g \propto F_0^{1/6} \]

Acoustical modes propagate along chains of force, where \(F_0 \neq 0 \)

\[F_0 = 0 \] corresponds to the sonic vacuum limit

Chicago, October 2004
Basic concepts

Sonic vacuum, but nonlinearity + dispersion = Solitons

\[
\frac{\partial \nu}{\partial t} + (1 + \nu) \frac{\partial \nu}{\partial x} + \frac{\partial^3 \nu}{\partial x^3} = 0
\]

e.g. KdV equation

Nonlinearity COMPENSATES Dispersion

A chain of elastic beads supports acoustical wave and also solitary waves

Chicago, October 2004
Modeling equation: V. Nesterenko 1984

\[m \frac{\partial^2 u_n}{\partial t^2} = \kappa \left[(u_{n-1} - u_n)^{3/2} - (u_n - u_{n+1})^{3/2} \right] \]

\[\kappa = \frac{R^{1/2}}{2^{3/2} \theta} \]

\[\theta = \frac{3(1 - \sigma^2)}{4Y} \]

\[\lambda \gg R \quad \Rightarrow \quad \frac{\partial^2 \psi}{\partial t^2} + C^2 \frac{\partial^2 \psi}{\partial x^2} \left[\psi^{3/2} + \left(\frac{2}{5} \right) R^2 \psi^{1/4} \frac{\partial^2 \psi}{\partial x^2} \left(\psi^{5/4} \right) \right] \approx 0 \]

\[C^2 \propto \kappa / m \]

\[\psi = -\partial_x u \]

\[\psi = \left(\frac{5}{4} \right)^2 \left(\frac{\nu}{C} \right)^4 \cos^4 \left(\frac{x - \nu t}{R \sqrt{10}} \right) \]

\[F \approx \kappa (2R\psi)^{3/2} \]

\[F = F_m \cos^6 \left(\frac{x - \nu t}{R \sqrt{10}} \right) \]

\[\nu \approx \left(\frac{6}{5\pi \rho} \right)^{1/2} \left(\frac{F_m}{\theta^2 R^2} \right)^{1/6} \propto Y^{1/3} F_m^{1/6} \]

Chicago, October 2004
Basic concepts

In summary

\[F_0 \neq 0 \quad \rightarrow \quad c_g \propto F_0^{1/6} \quad \text{Acoustical modes} \]

\[F_0 = 0 \quad \rightarrow \quad \text{No acoustical wave but our system exhibits a solitary wave solution (a \textit{mexican-hat} profile)} \]

\[F(t) = F_m \cos^6 \left(\frac{x - \nu t}{R \sqrt{10}} \right) \quad \text{with} \quad \nu \propto F_m^{1/6} \]

Qualitative agreement with previous experimental works. For instance, V. Nesterenko et al and E. Falcon et al.
Experimental setup

Chicago, October 2004
Sensor response

\[\omega_0^2 = k_S (m_+^{-1} - m_-^{-1}) \]

\[\varepsilon = m_+ / m_- \]

\[F_S = k_S (x_+ - x_-) \]

\[F_\pm = F_S \pm m_\pm \partial^2_{tt} x_\pm \]

\[\partial^2_{tt} F_S + \omega_0^2 F_S = \omega_0^2 [(1 - \varepsilon) F_+ + \varepsilon F_-] \]
Monodisperse chain of beads

Force at wall

Chicago, October 2004
Monodisperse chain of beads

Force in chain

Force at wall

Chicago, October 2004
Monodisperse chain of beads

\[
\frac{\mu m F t}{v} = 10 \cos \left(\frac{6}{R} \right)
\]

Theoretical profile

\[
F(t) = F_m \cos^6 \left(\frac{x - ut}{R\sqrt{10}} \right)
\]

with \(v \propto F_m^{1/6} \)

Chicago, October 2004
Monodisperse chain of beads

Alternative method to RUS to measure Young modulus of small samples.

Chicago, October 2004
Monodisperse chain of beads

Force at wall

Force in chain

with dissipation

without dissipation

best fit

fit from velocity scaling

\[\tau = R \sqrt{10/V} \]

Chicago, October 2004
Introducing dissipation

\[\psi \approx \frac{\delta}{2R} \quad \Rightarrow \quad \partial^2_t \delta + C^2 \partial^2_{xx} \left[\delta^{3/2} \right] = 0 \]

Dissipative behavior

\[\partial^2_t \delta + C^2 \partial^2_{xx} \left[\delta^{3/2} + \eta \partial_t \left(\delta^{3/2} \right) \right] = 0 \]

\[\partial^2_t \delta + C^2 \partial^2_{xx} \left[\delta^{3/2} \left(1 + \frac{3\eta \partial_t \delta}{2} \right) \right] = 0 \]

\[\partial_t \delta \approx \pm \frac{\delta_m}{\tau} \quad \Rightarrow \quad \partial^2_t \delta + C^2 \partial^2_{xx} \left[\delta^{3/2} \left(1 \pm \frac{3\eta}{2\tau} \right) \right] = 0 \]

\[C^2 \propto Y \quad \Rightarrow \quad Y^* = Y \left(1 \pm \frac{3\eta}{2\tau} \right) \]

→ Compression (release) feels harder (softer) medium when dissipative

→ Compression faster than release i.e. broadening of the soliton

Chicago, October 2004
Effect of the gravity

Gravity introduces a gradient of static force

Chicago, October 2004
Almost all the energy is transmitted.
Good agreement between experiments and theory under academics configurations. Need a more accurate theory, including dissipation.

- Study of a disordered chains, and few others configurations.
- Two and three dimension effects: disorder, shock front?
- Shape effects, Hertz is no longer valid but solitary waves might remain; introduce defect contact to check.

In 3D, acoustical modes propagate along chains of force, where $F_0 \neq 0$

$F_0 = 0$, regions of solitary wave propagation.

Chicago, October 2004
Conclusions.

Works of 10 years old kids

Updated version of the manual of granular material exhibit.

Chicago, October 2004
Extension to 3D medium

“Spatial patterns of sound propagation in sand”,

\[\nu \tau \approx 3\phi \]

Effect of 1D chain of force

Chicago, October 2004
Extension to 3D medium

“Ultrasound propagation in externally stressed granular media”,
Jia, Caroli, Velicky, PRL 82(9), March 1999.

Coherent ballistic signal
Multiply scattered sound

The coherent part of the signal follows Hertz law

FIG. 3. Ultrasonic signals through the same bead packing as Fig. 1b detected by a smaller transducer under the same normal stress $P = 0.75$ MPa: (a) First loading; (b) reloading.

FIG. 4. Sound velocity V (data points) of the coherent E wave in the bead packing, $d = 0.4–0.8$ mm versus the applied stress P.

Chicago, October 2004