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ABSTRACT

Geometric stress focusing, e.g. in a crumpled sheet, creates point-like vertices that terminate

in a characteristic local crescent shape. The observed scaling of the size of this crescent is

an open question in the stress focusing of elastic thin sheets. According to experiments

and simulations, this size depends on the outer dimension of the sheet, but intuition and

rudimentary energy balance indicate it should only depend on the sheet thickness. We

address this discrepancy by modeling the observed crescent with a more geometric approach,

where we treat the crescent as a curved crease in an isometric sheet. Although curved

creases have already been studied extensively, the crescent in a crumpled sheet has its own

unique features: the material crescent terminates within the material, and the material

extent is much larger than the extent of the crescent. These features together with the

general constraints of isometry lead to constraints linking the surface profile to the crease-line

geometry. We construct several examples obeying these constraints, showing finite curved

creases are fully realizable. This approach has some particular advantages over previous

analyses, as we are able to describe the entire material without having to resort to excluding

the region around the sharp crescent. Finally, we deduce testable relations between the

crease and the surrounding sheet, and discuss some of the implications of our approach with

regards to the scaling of the crescent size.
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CHAPTER 1

INTRODUCTION

Emergent structures are omnipresent in nature. Groups of birds exhibit collective flocking

behavior in space and time [2]. Layered fluids of different density form intricate fingering

patterns [3]. From spontaneous magnetization [4], to the self-assembly of molecules [5], to

shear thickening in colloidal suspensions [6], to the distribution of matter in Saturn’s rings

[7], these structures can be observed on many different length scales. One can also see similar

structures abstractly, such as in non-linear oscillations in dynamical systems [8], and even

in the harmonic structure of music [9].

Typically emergent structure leads to a breaking of spatial symmetry. The prototypical

instance is crystallization, where collections of atoms or molecules condense and arrange

themselves into lattices, resulting in a highly-ordered system that breaks translational sym-

metry. One sees emergent structure in other phase transitions as well, where the structure

will exhibit self-similarity near a critical point.

As one moves to the continuum limit, where elasticity can properly describe the mechan-

ical deformations of a material, more macroscopic structures appear. Biology holds many

examples, such as helical coiling of vines [10], ruffles along the edges of lotus leaves [11], and

embryonic tissue development [12]. Emergent structures in media may also arise beyond the

elastic limit in the realm of irreversible material failure, where the yield stress of material

is surpassed. Examples include geological fracture [13], necking in ductile metals [14], and

tearing of plastic sheets [15]. These structures arise via some type of forcing, as the material

responds by storing elastic energy and changing shape. Different forcing programs will lead

to different structures, and a natural question to ask is what forcing is needed to yield a

desired structure.

If we consider materials whose extent is small in one or two dimensions, emergent struc-

tures are more commonly seen, due to these materials being more easily deformable. These

structures are of particular interest because one observes a 3-dimensional structure in an
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inherently lower dimensional material. These have led to interesting mathematical theorems

about the embedding of low dimensional objects in higher dimensional spaces [16]. The

most basic example of emergent structure in a low-dimensional material is the buckling of

a 1-dimensional beam, first described by Euler [17]. One applies a compressive force to the

beam until a critical load is reached, at which point the straight configuration is no longer

stable and the beam curves and buckles. When one moves to 2-dimensional sheets, the same

basic buckling behavior can be seen when one applies a load to two opposite sides of the

material. However, much richer structures can arise, such as buckling patterns in twisted

ribbons under tension [18], azimuthal wrinkling observed in disks suspended on a liquid drop

[19], and paper origami which can lead to mechanical metamaterials [20].

An interesting subclass of emergent structures are those where large deformations are

localized to small regions of the material. While this phenomenon is very commonplace,

it goes against our intuition from thermodynamics. If one injects energy into a system,

one expects the energy instead to distribute itself uniformly across the system’s size. A

paradigmatic example of this localized behavior is seen in fluid boundary layers in pipe flow,

where a large amount of viscous drag occurs near the pipe wall [21]. Another example are

the caustic networks of reflected light observed in bodies of water [22]. The size of and the

amount of energy stored in these localized region often exhibit power-law behaviors in a

regime where a system parameter is asymptotically small. These same kinds of power laws

are seen in many of the emergent behaviors referred to above.

One particular phenomenon of interest in this subclass is thin-sheet crumpling. If one

compresses a thin sheet, such as a piece of paper, along its boundaries, the sheet begins to

buckle. However, instead of exhibiting large wavelength deformations, the material develops

highly connected networks of vertices and ridges spanning its entire extent. These networks

form before the yield stress threshold is reached, but eventually the material plastically

deforms, leading to the pattern of creases one sees after unfurling a crumpled piece of paper

[23, 24, 25]. Understanding the nature of this stress focusing in thin sheets may provide
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some much needed insight on boundary layers in elastic materials. Furthermore, being able

to manipulate these networks may prove useful for designing localized structures in materials

via particular ways of external forcing.

In this thesis, we propose a new geometric approach of understanding the extent of stress

focusing near a vertex in a crumpled sheet. In Chapter 2, we review how stress focusing

arises in crumpled sheets. We introduce the prototypical model of a vertex and review

previous work on determining the size of the stress focused region around a vertex. In

Chapter 3, we introduce our approach. In the prototypical vertex model, one observes a 1-

dimensional structure in the shape of a crescent. We argue that this crescent be can described

by a separately studied structure known as a curved crease. We outline the geometric

constraints which make a curved crease compatible with thin-sheet elasticity. In Chapter

4, we restrict ourselves to creases which more closely resemble the observed crescent. The

defining characteristic of this crescent is that it terminates within the material. Furthermore,

the extent of the surrounding material is much larger than the size of the material. We

derive the geometric constraints which are necessary for a curved crease to exhibit these

characteristics. In Chapter 5, we describe several examples of curved creases which obey

these constraints. In Chapter 6, we discuss the elastic energy stored in these finite creases,

and argue how our approach can avoid the pitfalls of previous approaches. Finally, in Chapter

7, we discuss predictions of our approach that are experimentally testable, and describe

future directions and possible limitations our approach has with regard to understanding

stress focusing in a crumpling vertex.
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CHAPTER 2

STRESS FOCUSING

2.1 Crumpling of thin sheets

As a first step to explain crumpling, we start by considering an initially flat thin sheet, whose

thickness h is much smaller than the other dimensions of the material. The deformations of

this sheet can then be described by deformations of the midplane, and can be separated into

two types: in-plane stretching of the sheet, which leads to strain within the midplane, and

out-of-plane bending, which gives rise to curvature of the midplane surface. Each of these

deformation modes has an energy cost, which can be found from the 3-dimensional strain

induced by each mode [26]. For a homogeneous isotropic sheet with a Young’s modulus Y

and Poisson ratio ν, the stretching energy ES is given by

ES =
hY

2(1− ν2)

∫
dA
[
ν(tr γij)

2 + (1− ν)tr γ2
ij

]
(2.1)

where γij is the two-dimensional strain tensor of the midplane [26]. Similarly, the bending

energy EB is

EB =
h3Y

24(1− ν2)

∫
H2 dA (2.2)

where H is the mean curvature of the midplane surface, defined as the average of the prin-

cipal surface curvatures [26]. There is also a term proportional to the integrated Gaussian

curvature K, but due to the Gauss-Bonnet theorem, this term does not change with any

smooth deformation, and so we need not include it [27].

While it intuitively seems that these two modes are independent, it turns out that the

midplane strain and curvature are geometrically constrained. This is due to Gauss’ The-

orema Egregium, which states that the Gaussian curvature of a surface is invariant under

deformations which preserve lengths within the surface [27]. In terms of mechanics, this

means that an initially flat sheet will maintain zero Gaussian curvature everywhere if it does
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not undergo any stretching, i.e. if γij is zero everywhere.

If one compares the stretching and bending energies, specifically their dependence on the

sheet thickness, one sees that for a given surface shape, the ratio of bending to stretching

energies goes as h2. This indicates that for thin sheets, it costs more energy to stretch than

to bend, so that when h → 0, any amount of stretching is indefinitely costly relative to

bending energetically. Such zero-thickness sheets are called isometric, and their equilibrium

configurations occur when EB is a minimum subject to the constraint that γij (and therefore

ES) is zero.

We mentioned earlier that a flat sheet that is deformed without stretching will preserve

its Gaussian curvature. Since a flat sheet has K = 0 everywhere, a deformed isometric sheet

must have K = 0 everywhere as well. By definition, the Gaussian curvature is the product

of the principal surface curvatures, so if K vanishes everywhere, there must be a principal

direction of zero curvature at each point in the material. These directions are known as

generators, and a surface described by these generators is known as a developable surface

[27].

Due to the requirement of unstretchability, there are strong constraints on the extent to

which one can uniformly confine an isometric sheet. If one tries to uniformly confine the

sheet to a region smaller than the size of the sheet R, in order to avoid bending of generators,

the sheet develops “vertices” where generators meet at a point within the material. Due to

this converging of directions, the shape of the material around such a vertex will be cone-like.

As one confines the sheet further, more vertices appear, maintaining unstretchability. When

the sheet has been confined enough so that two of these vertices are within the vicinity

of one another, the generators emanating from these vertices will begin to overlap within

the material. If one considers a point in the material where this overlap occurs, one has

two independent directions of zero curvature. This means these regions of overlap must be

completely flat. The one exception is the line that joins the two vertices. The material will

fold along this line, giving rise to a sharp straight crease, or “ridge.” So besides the conical
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regions where material generators meet at a vertex, the sheet is flat everywhere except near

vertices and ridges, and almost all of the elastic stress is localized at these singular structures,

due to the large bending deformations in these regions. As the sheet continues to be confined,

networks of these vertices joined by ridges develop, leading to the structures one commonly

sees in a crumpled sheet of paper.

A real finite-thickness sheet will also exhibit vertices and ridges, but these regions will be

accompanied by some amount of stretching. If the sheet were truly unstretchable, it would

cost an infinite amount of bending energy to form vertices and ridges, due to their sharp

nature. Allowing for stretching relaxes this divergence. Furthermore, a natural length scale

must emerge from the balance between bending and stretching, determining the size of the

regions where stress is localized. This has been thoroughly studied for a stretching ridge,

where the width has been shown to scale as h1/3R2/3 [28]. However, the scaling of stress

focusing in a vertex has proven to be much more subtle issue, as we shall now see.

2.2 D-cone core scaling

As with ridges, the size of the region around a vertex where stretching occurs will be finite.

There is a straightforward way to study a single vertex in isolation: if one takes a thin sheet

and pushes it into a circular ring, one gets a structure known as a developable cone, or d-cone

for short [29]. In the zero-thickness limit, the material is unstretched everywhere except at

the central forcing point, and has straight generators emanating from this point (hence the

name developable). Due to its conical shape and the confining nature of the forcing, the

d-cone serves as a paradigm for studying vertices in crumpled sheets, and has been studied

extensively both via experiments and simulations [30, 31, 32, 33, 34, 35].

The bending energy of a d-cone can be calculated from the curvature. Due to the locally

conical geometry, the curvature goes as 1/r, where r is the distance from the forcing point,

and therefore has a divergence at the center. In order to maintain a finite energy, some

distortion from this ideal cone structure is necessary, at least within some small region of
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Figure 2.1: Curved crescents in thin sheets. Left shows a crescent observed at the vertex of
a crumpled sheet, circled in red. Right shows crescents seen at the corners of a buckled ring
ridge (reproduced from [1]).

size Rc. Supposing no appreciable distortion for r > Rc, one can then find the scaling of the

bending energy:

EB ∼ h3Y

∫ R

Rc

1

r2
r dr ∼ h3Y log

R

Rc
. (2.3)

One typically treats Rc as a cutoff radius, separating the outside conical region from the inner

region, which is referred to as the d-cone core. In a real finite-thickness sheet, the material

will exhibit stretching, which one presumes to be localized to the core region, similar to the

vertex in a crumpled sheet. As in the stretching ridge, there will be competition between

stretching and bending, leading to stress focusing in the core. This physically manifests itself

in the material as a sharp crescent whose length is commonly taken as a measure of Rc [30].

These crescents are seen in crumpled sheets, as well as at the corners of a buckled ring ridge,

as seen in Fig. 2.1. Because this region is completely localized around the tip, one would

expect its size should not depend on any outer dimensions of the sheet, i.e. the size of the

sheet R or the size of the confining ring Rp. It is therefore expected that Rc ∼ h, which is

supported by a more rigorous energy-balance argument [32].

If one removes a disk of radius Rc from the center of a flat sheet and pushes it into a

confining ring, the resulting shape will be that of a d-cone with its tip removed, whose energy
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cost is given by Eq. (2.3). This energy alone prefers a large Rc, since it will be smaller for

larger Rc, and its derivative with respect to Rc is independent of R. In order for there to an

optimal finite Rc, there must be an additional contribution to the total energy that prefers

small Rc. If one now re-attaches the disk to the inner boundary of the truncated d-cone,

the disk must deform in order to close the surface and will therefore cost elastic energy. The

distortion of the disk may, for example, be similar to that of spherical cap, and so will exhibit

a mean curvature of order 1/Rc. This means that the energy cost due to bending will be of

order h3Y (1/Rc)
2R2

c ∼ R0
c , i.e. it will be independent of Rc. The distorted disk will also

exhibit Gaussian curvature of order 1/R2
c , and so will have a stretching energy cost of order

hY R2
c . This energy prefers small Rc, and so competes with the energy of the outer region.

However, it is independent of R, so that if one minimizes the sum of the bending energy of

the outer region and the stretching energy of the inner disk, the result is Rc ∼ h.

The above argument indicates that the core radius should be independent of the outer

dimension of the sheet. However, both simulations and experiments have measured an Rc

which does depend on the sheet size, and appears to vary as h1/3R2/3, the same as a

stretching ridge. Furthermore, Cerda and Mahadevan [30] have proposed a different energy-

balance argument that includes stretching due to having a finite-size core, which lengthens

the radial generators. This analysis leads to the observed scaling of Rc that depends on R.

While it appears the core size scaling is fully explained by this argument, there are

still some inconsistencies. The stretching due to lengthening of generators that Cerda and

Mahadevan include in their analysis would normally be present in the d-cone outer region

in addition to the core. This stretching would have an unphysically large energy cost and

would completely dominate the already present bending energy from Eq. (2.3). It may be

possible that the stretching is completely localized to the core region, but no argument has

been put forth to justify this [24]. Furthermore, the d-cone simulations and experiments are

limited by the range of sheet thickness they can probe, and typically only use a single order

of magnitude range of h when measuring Rc. Thus there is still an explanation to be found
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for the observed scaling of Rc. Still, for the moment it appears that the core size increases

indefinitely with R for fixed h and decreases indefinitely with h at fixed R.
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CHAPTER 3

CURVED CREASES

3.1 D-cone crescent as a curved crease

We turn back to the observed crescent in the d-cone core. The stretching in the core region

occupies a finite area around the crescent. If we take the limit as h → 0, the crescent will

shrink to a point, where the stretching will be localized, just like in a real cone. However,

if Rc does have a power law dependence on R, we may at the same time take the limit as

R → ∞ in such a way that Rc is kept fixed as h → 0. In this case, we maintain a crescent

of finite size, where the stretching is now localized to the crescent line, so that the material

is isometric everywhere else. What we are therefore left with is a sharp curved crease in an

isometric sheet. This provides a new way to study the d-cone core region, as we shall see.

Curved creases have been a topic of interest in the field of thin elastic sheets for several

decades. If one draws a curved line on a flat piece of paper and folds along that line, the

material develops 3-dimensional structure. The curve is no longer planar and the surfaces

on either side become curved in a way such that they are compatible with the curvature of

the crease line, which is determined by the shape of the planar curve and the opening angle

of the fold. These creases have been studied by computer scientists [36] and engineers [37] as

an avenue for designing new geometric shapes. More recently, there has been an interest in

curved creases made out of real finite-thickness materials. A simple example is the buckled

structure that is formed when one folds along the midline of a circular annulus [38, 39, 40],

due to geometric frustration from having a closed curve. The d-cone crescent seems to be a

likely candidate as a curved crease, but there are two key differences that separate it from

previously studied cases. The crescent is in a sheet of large extent, and the crescent line

terminates within the material. There have been studies attempting to model the d-cone

that account for either one of these features [41, 42, 43], but as of yet, no one has explicitly

laid out geometric constraints that yield both of these characteristics. We will do just that,
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but we first present the background necessary to describe curved creases in isometric sheets.

3.2 Geometry of curves and surfaces

We first remind ourselves of some fundamental notions from geometry of curves and surfaces.

Much of this is covered in standard references on differential geometry [27, 44], but we

will present these ideas in the context of curved creases, following the conventions used in

[37] and [38]. We start with a space curve ~X(s) parametrized by arc-length. We define

the tangent vector field t̂(s) of ~X(s) as the derivative of ~X(s) with respect to arc-length:

t̂(s) ≡ ~X ′(s). Since ~X(s) is parametrized by arc-length, and is therefore unit-speed, t̂(s)

must be a unit vector. We can then define a second vector field n̂(s) as the normalized

derivative of the tangent: n̂(s) ≡ t̂′(s)/‖t̂′(s)‖. This is known as the curve normal vector

field, and must be orthogonal to t̂(s), since t̂(s) is a unit vector. We finally define the

binormal vector field b̂(s) as the cross product between the tangent and normal vector fields:

b̂(s) ≡ t̂(s)× n̂(s). We therefore now have an orthonormal frame defined at each point along

the curve, {t̂(s), n̂(s), b̂(s)}, known as the Frenet-Serret frame:

t̂(s) ≡ ~X ′(s) (3.1a)

n̂(s) ≡ t̂′(s)/‖t̂′(s)‖ (3.1b)

b̂(s) ≡ t̂(s)× n̂(s). (3.1c)

Fig. 3.1 shows an example of this frame for a given curve.

The Frenet-Serret frame allows one to define the intrinsic shape of the curve using two

scalar functions, a curvature denoted κ(s) and a “torsion” denoted by τ(s). These scalars

11



are defined by what are known as the Frenet-Serret formulas [27]:

t̂′(s) = κ(s)n̂(s) (3.2a)

n̂′(s) = −κ(s)t̂(s) + τ(s)b̂(s) (3.2b)

b̂′(s) = −τ(s)n̂(s). (3.2c)

The curvature, which is simply the magnitude of t̂′(s), tells one how much a curve deviates

from a linear trajectory, and is non-negative. In mechanical terms, if ~X(s) represents the

trajectory of a moving particle, κ(s) is the magnitude of the particle’s normal acceleration.

Often t̂′(s) is referred to as the vector curvature ~κ(s), and always points in the direction in

which ~X(s) is curving. The torsion measures how much the curve is twisting out the plane

spanned by t̂(s) and n̂(s) (known as the plane of curvature), and so tells how non-planar

~X(s) is. The sign of τ(s) is a matter of convention, but here is chosen so that a right-handed

helix has positive torsion. The curvature and torsion completely determine ~X(s) up to rigid-

body motions, as one can integrate Eq. (3.2) to find the Frenet-Serret frame, in particular

the tangent t̂(s), and then integrate Eq. (3.1a) to find ~X(s).

The Frenet-Serret frame is useful for completely characterizing a curve in space. However,

if we have a curve that lies on a curved surface, it is useful to have an orthonormal frame

that relates the curvature and torsion of the curve to the curvature of the surface. We

now consider a curve ~X(s) (again parametrized by arc-length) on an arbitrary surface S,

and start with the curve tangent t̂(s) as the first vector field of our orthonormal basis. If

our surface is orientable and we have chosen a particular orientation, S has a well-defined

smooth unit normal vector field N̂S which is orthogonal to the tangent plane at each point

on S. In particular, at each point along ~X(s), t̂ and N̂S will be orthogonal to guarantee that

the curve lies in the surface. Therefore, if along our curve we define N̂(s) ≡ N̂S( ~X(s)), we

have a second orthonormal vector field, which we will call the surface normal vector field.

To complete our basis, we define a third vector field û(s), known as the normal tangent
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S

Figure 3.1: Co-ordinate bases for curves within surfaces. The curve marked C is directed
out of the page at one point, and is bending to the right. The Frenet-Serret basis (t̂, n̂, b̂) of
Eq. 3.1 is shown at this point. The embedding surface is marked S with its surface normal
N̂ . The Darboux basis (t̂, û, N̂) of Eq. 3.3 is shown. ψ is the angle between the two bases,
demonstrating they are related by a rotation about the curve tangent t̂.

vector field, as the cross product between the surface normal and tangent vector fields:

û(s) ≡ N̂(s) × t̂(s). û(s) is then a vector tangent to S and and perpendicular to the curve

tangent. Evidently t̂(s) and û(s) then form a basis tangent to the surface at s. Combined

with the surface normal, we therefore have an orthonormal frame defined along our curve,

{t̂(s), û(s), N̂(s)}, which is known as the Darboux frame [44]:

t̂(s) ≡ ~X ′(s) (3.3a)

N̂(s) ≡ N̂S( ~X(s)) (3.3b)

û(s) ≡ N̂(s)× t̂(s). (3.3c)

Since both the Frenet-Serret and Darboux frames share the common vector t̂(s), they are
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related by a rotation about t̂(s):

n̂(s) = cosψ(s) û(s) + sinψ(s) N̂(s) (3.4a)

b̂(s) = − sinψ(s) û(s) + cosψ(s) N̂(s) (3.4b)

where ψ is the angle between n̂(s) and û(s). Fig. 3.1 shows an example of the Darboux

frame for a curve lying on a surface.

Similar to the Frenet-Serret case, one can define three scalar quantities κg(s), κN (s), and

τg(s) from the rate-of-change of the Darboux frame:

t̂′(s) = κg(s)û(s) + κN (s)N̂(s) (3.5a)

û′(s) = −κg(s)t̂(s) + τg(s)N̂(s) (3.5b)

N̂ ′(s) = −κN (s)t̂(s)− τg(s)û(s). (3.5c)

κg(s) and κN (s) are known as the geodesic and normal curvatures, respectively, and are

the components of ~κ(s) tangent and normal to S (κg(s)û(s) and κN (s)N̂(s) are sometimes

written as ~κg(s) and ~κN (s), so that ~κ(s) = ~κg(s) + ~κN (s)). τg(s) is known as the geodesic

torsion, and measures how much the curve is twisting out of the surface tangent plane.

It is worth mentioning that the Frenet-Serret scalars, κ(s) and τ(s), and the Darboux

scalars, κg(s), κN (s), and τg(s), can be related to each other. If we combine Eqs. (3.2a) and

(3.5a), replace n̂(s) with Eq. (3.4a), and equate the coefficients of û(s) and N̂(s) on either

side, we get

κg(s) = κ(s) cosψ(s) (3.6a)

κN (s) = κ(s) sinψ(s), (3.6b)

which is just another statement of κg(s) and κN (s) being independent components of ~κ(s).

From Eq. (3.5b), we see that τg(s) = û′(s) · N̂(s). If we invert Eqs. (3.4) to express û(s)
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and N̂(s) in terms of n̂(s) and b̂(s), and differentiate the expression for û(s) (making use of

Eqs. (3.2)), we can evaluate this dot product:

τg(s) = τ(s)− ψ′(s). (3.7)

This expresses the fact that the rotation of the Darboux frame about t̂(s) can be decomposed

into the rotation of the Frenet-Serret frame about t̂(s) (i.e. τ(s)) and the rotation the

Darboux frame relative to the Frenet-Serret frame (i.e. ψ′(s)).

One last thing to consider is what happens when one deforms a surface with a curve on it.

If we require that the curve remain on the surface as the surface is deformed, for a general

deformation, its curvature and torsion will change, and the curve is free to move around

within the surface. However, if the deformation preserves lengths within the surface (i.e. is

isometric), the curve can still change in space, but it must now be fixed within surface. This

means its geodesic curvature, the in-plane component of the curvature vector, must remain

the same after the deformation. This will be important when we outline the conditions for

having a crease in an isometric sheet.

What we have described so far applies to arbitrary smooth surfaces. We now restrict

ourselves to flat Euclidean sheets (we also take our sheet to be narrow in one dimension,

for reasons that will become clear later). If one draws a curve on a flat asymptotically thin

sheet and folds through an opening angle θ(s) along this curve (see Fig. 3.2), one gets

a 3-dimensional structure known as a curved crease. This structure can be thought of as

two surfaces meeting a common space curve ~X(s) (again parametrized by arc-length), and

since it is formed by an isometric deformation of a flat surface, the two surfaces must be

developable. Therefore each surface has a generator at every point, and can be described by

the standard parametrization for ruled surfaces:

~X±(s, v) = ~X(s) + vĝ±(s) (3.8)
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<latexit sha1_base64="mw3+1PUsqKwDNZR1QwXfB/PW524=">AAAB8XicdVDLSgMxFM34rPVVdekmWIS6GZLS0VkW3LisYB/YDiWTZtrQTGZIMoUy9C/cuFDErX/jzr8xfQgqeuDC4Zx7ufeeMBVcG4Q+nLX1jc2t7cJOcXdv/+CwdHTc0kmmKGvSRCSqExLNBJesabgRrJMqRuJQsHY4vp777QlTmifyzkxTFsRkKHnEKTFWuu9NGM2Hs4q+6JfKyEWXXg37ELkewj72LKl6GKEqxC5aoAxWaPRL771BQrOYSUMF0bqLUWqCnCjDqWCzYi/TLCV0TIasa6kkMdNBvrh4Bs+tMoBRomxJAxfq94mcxFpP49B2xsSM9G9vLv7ldTMT+UHOZZoZJulyUZQJaBI4fx8OuGLUiKklhCpub4V0RBShxoZUtCF8fQr/J62qi5GLb2vlur+KowBOwRmoAAyuQB3cgAZoAgokeABP4NnRzqPz4rwuW9ec1cwJ+AHn7ROFWpDH</latexit><latexit sha1_base64="mw3+1PUsqKwDNZR1QwXfB/PW524=">AAAB8XicdVDLSgMxFM34rPVVdekmWIS6GZLS0VkW3LisYB/YDiWTZtrQTGZIMoUy9C/cuFDErX/jzr8xfQgqeuDC4Zx7ufeeMBVcG4Q+nLX1jc2t7cJOcXdv/+CwdHTc0kmmKGvSRCSqExLNBJesabgRrJMqRuJQsHY4vp777QlTmifyzkxTFsRkKHnEKTFWuu9NGM2Hs4q+6JfKyEWXXg37ELkewj72LKl6GKEqxC5aoAxWaPRL771BQrOYSUMF0bqLUWqCnCjDqWCzYi/TLCV0TIasa6kkMdNBvrh4Bs+tMoBRomxJAxfq94mcxFpP49B2xsSM9G9vLv7ldTMT+UHOZZoZJulyUZQJaBI4fx8OuGLUiKklhCpub4V0RBShxoZUtCF8fQr/J62qi5GLb2vlur+KowBOwRmoAAyuQB3cgAZoAgokeABP4NnRzqPz4rwuW9ec1cwJ+AHn7ROFWpDH</latexit><latexit sha1_base64="mw3+1PUsqKwDNZR1QwXfB/PW524=">AAAB8XicdVDLSgMxFM34rPVVdekmWIS6GZLS0VkW3LisYB/YDiWTZtrQTGZIMoUy9C/cuFDErX/jzr8xfQgqeuDC4Zx7ufeeMBVcG4Q+nLX1jc2t7cJOcXdv/+CwdHTc0kmmKGvSRCSqExLNBJesabgRrJMqRuJQsHY4vp777QlTmifyzkxTFsRkKHnEKTFWuu9NGM2Hs4q+6JfKyEWXXg37ELkewj72LKl6GKEqxC5aoAxWaPRL771BQrOYSUMF0bqLUWqCnCjDqWCzYi/TLCV0TIasa6kkMdNBvrh4Bs+tMoBRomxJAxfq94mcxFpP49B2xsSM9G9vLv7ldTMT+UHOZZoZJulyUZQJaBI4fx8OuGLUiKklhCpub4V0RBShxoZUtCF8fQr/J62qi5GLb2vlur+KowBOwRmoAAyuQB3cgAZoAgokeABP4NnRzqPz4rwuW9ec1cwJ+AHn7ROFWpDH</latexit><latexit sha1_base64="mw3+1PUsqKwDNZR1QwXfB/PW524=">AAAB8XicdVDLSgMxFM34rPVVdekmWIS6GZLS0VkW3LisYB/YDiWTZtrQTGZIMoUy9C/cuFDErX/jzr8xfQgqeuDC4Zx7ufeeMBVcG4Q+nLX1jc2t7cJOcXdv/+CwdHTc0kmmKGvSRCSqExLNBJesabgRrJMqRuJQsHY4vp777QlTmifyzkxTFsRkKHnEKTFWuu9NGM2Hs4q+6JfKyEWXXg37ELkewj72LKl6GKEqxC5aoAxWaPRL771BQrOYSUMF0bqLUWqCnCjDqWCzYi/TLCV0TIasa6kkMdNBvrh4Bs+tMoBRomxJAxfq94mcxFpP49B2xsSM9G9vLv7ldTMT+UHOZZoZJulyUZQJaBI4fx8OuGLUiKklhCpub4V0RBShxoZUtCF8fQr/J62qi5GLb2vlur+KowBOwRmoAAyuQB3cgAZoAgokeABP4NnRzqPz4rwuW9ec1cwJ+AHn7ROFWpDH</latexit>

�(s)
<latexit sha1_base64="SIgKEuhQwJZbhkqLp7SgHWG/5ek=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BItQLyURwR4LXjxWsB/ShjLZbtqlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzwoQzbTzv2ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RA15UzSlmGG026iKIqQ0044uZ37nSeqNIvlg5kmNBA4kixiBI2VHvsjFAKr+nJQrng1bwF3nfg5qUCO5qD81R/GJBVUGsJR657vJSbIUBlGOJ2V+qmmCZIJjmjPUomC6iBbHDxzL6wydKNY2ZLGXai/JzIUWk9FaDsFmrFe9ebif14vNVE9yJhMUkMlWS6KUu6a2J1/7w6ZosTwqSVIFLO3umSMComxGZVsCP7qy+ukfVXzvZp/f11p1PM4inAG51AFH26gAXfQhBYQEPAMr/DmKOfFeXc+lq0FJ585hT9wPn8AI8eP7Q==</latexit><latexit sha1_base64="SIgKEuhQwJZbhkqLp7SgHWG/5ek=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BItQLyURwR4LXjxWsB/ShjLZbtqlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzwoQzbTzv2ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RA15UzSlmGG026iKIqQ0044uZ37nSeqNIvlg5kmNBA4kixiBI2VHvsjFAKr+nJQrng1bwF3nfg5qUCO5qD81R/GJBVUGsJR657vJSbIUBlGOJ2V+qmmCZIJjmjPUomC6iBbHDxzL6wydKNY2ZLGXai/JzIUWk9FaDsFmrFe9ebif14vNVE9yJhMUkMlWS6KUu6a2J1/7w6ZosTwqSVIFLO3umSMComxGZVsCP7qy+ukfVXzvZp/f11p1PM4inAG51AFH26gAXfQhBYQEPAMr/DmKOfFeXc+lq0FJ585hT9wPn8AI8eP7Q==</latexit><latexit sha1_base64="SIgKEuhQwJZbhkqLp7SgHWG/5ek=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BItQLyURwR4LXjxWsB/ShjLZbtqlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzwoQzbTzv2ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RA15UzSlmGG026iKIqQ0044uZ37nSeqNIvlg5kmNBA4kixiBI2VHvsjFAKr+nJQrng1bwF3nfg5qUCO5qD81R/GJBVUGsJR657vJSbIUBlGOJ2V+qmmCZIJjmjPUomC6iBbHDxzL6wydKNY2ZLGXai/JzIUWk9FaDsFmrFe9ebif14vNVE9yJhMUkMlWS6KUu6a2J1/7w6ZosTwqSVIFLO3umSMComxGZVsCP7qy+ukfVXzvZp/f11p1PM4inAG51AFH26gAXfQhBYQEPAMr/DmKOfFeXc+lq0FJ585hT9wPn8AI8eP7Q==</latexit><latexit sha1_base64="SIgKEuhQwJZbhkqLp7SgHWG/5ek=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BItQLyURwR4LXjxWsB/ShjLZbtqlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzwoQzbTzv2ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RA15UzSlmGG026iKIqQ0044uZ37nSeqNIvlg5kmNBA4kixiBI2VHvsjFAKr+nJQrng1bwF3nfg5qUCO5qD81R/GJBVUGsJR657vJSbIUBlGOJ2V+qmmCZIJjmjPUomC6iBbHDxzL6wydKNY2ZLGXai/JzIUWk9FaDsFmrFe9ebif14vNVE9yJhMUkMlWS6KUu6a2J1/7w6ZosTwqSVIFLO3umSMComxGZVsCP7qy+ukfVXzvZp/f11p1PM4inAG51AFH26gAXfQhBYQEPAMr/DmKOfFeXc+lq0FJ585hT9wPn8AI8eP7Q==</latexit>

~X(s, v)
<latexit sha1_base64="3BgKH+1yWgHFyARPAIBb8PUAEvo=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiBEkGEmMUxyC3jxGMEskBlCT6cnadKz0N0TCEN+w4sHRbz6M978GzuLoKIPCh7vVVFVz084k8qyPozcxubW9k5+t7C3f3B4VDw+6cg4FYS2Scxj0fOxpJxFtK2Y4rSXCIpDn9OuP7lZ+N0pFZLF0b2aJdQL8ShiASNYacl1p5RkvXlZXk0vB8WSZdoVx6nZyDIbjYZTq66IVa0j27SWKMEarUHx3R3GJA1ppAjHUvZtK1FehoVihNN5wU0lTTCZ4BHtaxrhkEovW948RxdaGaIgFroihZbq94kMh1LOQl93hliN5W9vIf7l9VMV1L2MRUmqaERWi4KUIxWjRQBoyAQlis80wUQwfSsiYywwUTqmgg7h61P0P+lUTFtndXddatbXceThDM6hDDY40IRbaEEbCCTwAE/wbKTGo/FivK5ac8Z65hR+wHj7BPvPkZ8=</latexit><latexit sha1_base64="3BgKH+1yWgHFyARPAIBb8PUAEvo=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiBEkGEmMUxyC3jxGMEskBlCT6cnadKz0N0TCEN+w4sHRbz6M978GzuLoKIPCh7vVVFVz084k8qyPozcxubW9k5+t7C3f3B4VDw+6cg4FYS2Scxj0fOxpJxFtK2Y4rSXCIpDn9OuP7lZ+N0pFZLF0b2aJdQL8ShiASNYacl1p5RkvXlZXk0vB8WSZdoVx6nZyDIbjYZTq66IVa0j27SWKMEarUHx3R3GJA1ppAjHUvZtK1FehoVihNN5wU0lTTCZ4BHtaxrhkEovW948RxdaGaIgFroihZbq94kMh1LOQl93hliN5W9vIf7l9VMV1L2MRUmqaERWi4KUIxWjRQBoyAQlis80wUQwfSsiYywwUTqmgg7h61P0P+lUTFtndXddatbXceThDM6hDDY40IRbaEEbCCTwAE/wbKTGo/FivK5ac8Z65hR+wHj7BPvPkZ8=</latexit><latexit sha1_base64="3BgKH+1yWgHFyARPAIBb8PUAEvo=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiBEkGEmMUxyC3jxGMEskBlCT6cnadKz0N0TCEN+w4sHRbz6M978GzuLoKIPCh7vVVFVz084k8qyPozcxubW9k5+t7C3f3B4VDw+6cg4FYS2Scxj0fOxpJxFtK2Y4rSXCIpDn9OuP7lZ+N0pFZLF0b2aJdQL8ShiASNYacl1p5RkvXlZXk0vB8WSZdoVx6nZyDIbjYZTq66IVa0j27SWKMEarUHx3R3GJA1ppAjHUvZtK1FehoVihNN5wU0lTTCZ4BHtaxrhkEovW948RxdaGaIgFroihZbq94kMh1LOQl93hliN5W9vIf7l9VMV1L2MRUmqaERWi4KUIxWjRQBoyAQlis80wUQwfSsiYywwUTqmgg7h61P0P+lUTFtndXddatbXceThDM6hDDY40IRbaEEbCCTwAE/wbKTGo/FivK5ac8Z65hR+wHj7BPvPkZ8=</latexit><latexit sha1_base64="3BgKH+1yWgHFyARPAIBb8PUAEvo=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiBEkGEmMUxyC3jxGMEskBlCT6cnadKz0N0TCEN+w4sHRbz6M978GzuLoKIPCh7vVVFVz084k8qyPozcxubW9k5+t7C3f3B4VDw+6cg4FYS2Scxj0fOxpJxFtK2Y4rSXCIpDn9OuP7lZ+N0pFZLF0b2aJdQL8ShiASNYacl1p5RkvXlZXk0vB8WSZdoVx6nZyDIbjYZTq66IVa0j27SWKMEarUHx3R3GJA1ppAjHUvZtK1FehoVihNN5wU0lTTCZ4BHtaxrhkEovW948RxdaGaIgFroihZbq94kMh1LOQl93hliN5W9vIf7l9VMV1L2MRUmqaERWi4KUIxWjRQBoyAQlis80wUQwfSsiYywwUTqmgg7h61P0P+lUTFtndXddatbXceThDM6hDDY40IRbaEEbCCTwAE/wbKTGo/FivK5ac8Z65hR+wHj7BPvPkZ8=</latexit>

s
<latexit sha1_base64="+MfhNQs+XFqx40WtpW7aS+jx30E=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmVQJJbwIvHBMwDkiXMTjrJmNkHM7NCWPIFXjwo4tVP8ubfONmsoKIFDUVVN91dfiy40o7zYRU2Nre2d4q7pb39g8Oj8vFJV0WJZNhhkYhk36cKBQ+xo7kW2I8l0sAX2PPn1yu/d49S8Si81YsYvYBOQz7hjGojtdWoXHHsRgayJrVqThoucW0nQwVytEbl9+E4YkmAoWaCKjVwnVh7KZWaM4HL0jBRGFM2p1McGBrSAJWXZocuyYVRxmQSSVOhJpn6fSKlgVKLwDedAdUz9dtbiX95g0RP6l7KwzjRGLL1okkiiI7I6msy5hKZFgtDKJPc3ErYjErKtMmmZEL4+pT8T7pXtuvYbrtaadbzOIpwBudwCS7UoAk30IIOMEB4gCd4tu6sR+vFel23Fqx85hR+wHr7BLDdjYA=</latexit><latexit sha1_base64="+MfhNQs+XFqx40WtpW7aS+jx30E=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmVQJJbwIvHBMwDkiXMTjrJmNkHM7NCWPIFXjwo4tVP8ubfONmsoKIFDUVVN91dfiy40o7zYRU2Nre2d4q7pb39g8Oj8vFJV0WJZNhhkYhk36cKBQ+xo7kW2I8l0sAX2PPn1yu/d49S8Si81YsYvYBOQz7hjGojtdWoXHHsRgayJrVqThoucW0nQwVytEbl9+E4YkmAoWaCKjVwnVh7KZWaM4HL0jBRGFM2p1McGBrSAJWXZocuyYVRxmQSSVOhJpn6fSKlgVKLwDedAdUz9dtbiX95g0RP6l7KwzjRGLL1okkiiI7I6msy5hKZFgtDKJPc3ErYjErKtMmmZEL4+pT8T7pXtuvYbrtaadbzOIpwBudwCS7UoAk30IIOMEB4gCd4tu6sR+vFel23Fqx85hR+wHr7BLDdjYA=</latexit><latexit sha1_base64="+MfhNQs+XFqx40WtpW7aS+jx30E=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmVQJJbwIvHBMwDkiXMTjrJmNkHM7NCWPIFXjwo4tVP8ubfONmsoKIFDUVVN91dfiy40o7zYRU2Nre2d4q7pb39g8Oj8vFJV0WJZNhhkYhk36cKBQ+xo7kW2I8l0sAX2PPn1yu/d49S8Si81YsYvYBOQz7hjGojtdWoXHHsRgayJrVqThoucW0nQwVytEbl9+E4YkmAoWaCKjVwnVh7KZWaM4HL0jBRGFM2p1McGBrSAJWXZocuyYVRxmQSSVOhJpn6fSKlgVKLwDedAdUz9dtbiX95g0RP6l7KwzjRGLL1okkiiI7I6msy5hKZFgtDKJPc3ErYjErKtMmmZEL4+pT8T7pXtuvYbrtaadbzOIpwBudwCS7UoAk30IIOMEB4gCd4tu6sR+vFel23Fqx85hR+wHr7BLDdjYA=</latexit><latexit sha1_base64="+MfhNQs+XFqx40WtpW7aS+jx30E=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmVQJJbwIvHBMwDkiXMTjrJmNkHM7NCWPIFXjwo4tVP8ubfONmsoKIFDUVVN91dfiy40o7zYRU2Nre2d4q7pb39g8Oj8vFJV0WJZNhhkYhk36cKBQ+xo7kW2I8l0sAX2PPn1yu/d49S8Si81YsYvYBOQz7hjGojtdWoXHHsRgayJrVqThoucW0nQwVytEbl9+E4YkmAoWaCKjVwnVh7KZWaM4HL0jBRGFM2p1McGBrSAJWXZocuyYVRxmQSSVOhJpn6fSKlgVKLwDedAdUz9dtbiX95g0RP6l7KwzjRGLL1okkiiI7I6msy5hKZFgtDKJPc3ErYjErKtMmmZEL4+pT8T7pXtuvYbrtaadbzOIpwBudwCS7UoAk30IIOMEB4gCd4tu6sR+vFel23Fqx85hR+wHr7BLDdjYA=</latexit>

v
<latexit sha1_base64="0xKZPtBZmlizlJJizfXStZjLTPI=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFSbV0mRXcOOyBfuANpTJdNKOnUzCzKRQQr/AjQtF3PpJ7vwbJ20FFT1w4XDOvdx7T5BwpjRCH1ZhY3Nre6e4W9rbPzg8Kh+fdFScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG9yvzujUrFY3Ol5Qv0IjwULGcHaSK3ZsFxBtufWalcuRDZCXtWrG+J5nlN3oGOUHBWwRnNYfh+MYpJGVGjCsVJ9ByXaz7DUjHC6KA1SRRNMpnhM+4YKHFHlZ8tDF/DCKCMYxtKU0HCpfp/IcKTUPApMZ4T1RP32cvEvr5/q0PUzJpJUU0FWi8KUQx3D/Gs4YpISzeeGYCKZuRWSCZaYaJNNyYTw9Sn8n3SqtoNsp3VdabjrOIrgDJyDS+CAOmiAW9AEbUAABQ/gCTxb99aj9WK9rloL1nrmFPyA9fYJcoaNVQ==</latexit><latexit sha1_base64="0xKZPtBZmlizlJJizfXStZjLTPI=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFSbV0mRXcOOyBfuANpTJdNKOnUzCzKRQQr/AjQtF3PpJ7vwbJ20FFT1w4XDOvdx7T5BwpjRCH1ZhY3Nre6e4W9rbPzg8Kh+fdFScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG9yvzujUrFY3Ol5Qv0IjwULGcHaSK3ZsFxBtufWalcuRDZCXtWrG+J5nlN3oGOUHBWwRnNYfh+MYpJGVGjCsVJ9ByXaz7DUjHC6KA1SRRNMpnhM+4YKHFHlZ8tDF/DCKCMYxtKU0HCpfp/IcKTUPApMZ4T1RP32cvEvr5/q0PUzJpJUU0FWi8KUQx3D/Gs4YpISzeeGYCKZuRWSCZaYaJNNyYTw9Sn8n3SqtoNsp3VdabjrOIrgDJyDS+CAOmiAW9AEbUAABQ/gCTxb99aj9WK9rloL1nrmFPyA9fYJcoaNVQ==</latexit><latexit sha1_base64="0xKZPtBZmlizlJJizfXStZjLTPI=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFSbV0mRXcOOyBfuANpTJdNKOnUzCzKRQQr/AjQtF3PpJ7vwbJ20FFT1w4XDOvdx7T5BwpjRCH1ZhY3Nre6e4W9rbPzg8Kh+fdFScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG9yvzujUrFY3Ol5Qv0IjwULGcHaSK3ZsFxBtufWalcuRDZCXtWrG+J5nlN3oGOUHBWwRnNYfh+MYpJGVGjCsVJ9ByXaz7DUjHC6KA1SRRNMpnhM+4YKHFHlZ8tDF/DCKCMYxtKU0HCpfp/IcKTUPApMZ4T1RP32cvEvr5/q0PUzJpJUU0FWi8KUQx3D/Gs4YpISzeeGYCKZuRWSCZaYaJNNyYTw9Sn8n3SqtoNsp3VdabjrOIrgDJyDS+CAOmiAW9AEbUAABQ/gCTxb99aj9WK9rloL1nrmFPyA9fYJcoaNVQ==</latexit><latexit sha1_base64="0xKZPtBZmlizlJJizfXStZjLTPI=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFSbV0mRXcOOyBfuANpTJdNKOnUzCzKRQQr/AjQtF3PpJ7vwbJ20FFT1w4XDOvdx7T5BwpjRCH1ZhY3Nre6e4W9rbPzg8Kh+fdFScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG9yvzujUrFY3Ol5Qv0IjwULGcHaSK3ZsFxBtufWalcuRDZCXtWrG+J5nlN3oGOUHBWwRnNYfh+MYpJGVGjCsVJ9ByXaz7DUjHC6KA1SRRNMpnhM+4YKHFHlZ8tDF/DCKCMYxtKU0HCpfp/IcKTUPApMZ4T1RP32cvEvr5/q0PUzJpJUU0FWi8KUQx3D/Gs4YpISzeeGYCKZuRWSCZaYaJNNyYTw9Sn8n3SqtoNsp3VdabjrOIrgDJyDS+CAOmiAW9AEbUAABQ/gCTxb99aj9WK9rloL1nrmFPyA9fYJcoaNVQ==</latexit>

~X 0(s)
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Figure 3.2: Diagrams labeling quantities pertaining to curved crease. The left shows a view
of a narrow curved crease whose crease line is indicated by the black line. The right shows
a view facing the crease line tangent and indicates the opening angle θ.

where s is the arc-length coordinate, ĝ±(s) is the direction of a generator at s , and v is

the coordinate along generators1. + and − are used to distinguish between the two sides of

the crease, though we will refer to them here as “inner” and “outer” respectively. Though

~X±(s, v) completely describes the crease, one can more easily describe it using the curvature

κ(s) and torsion τ(s) of the crease curve, the opening angle of the crease θ(s), and the angle

between the generator and the crease curve tangent, γ±(s) (see Fig. 3.2). As we will now

see, all of these quantities are related due to constraints imposed by having an isometric

sheet.

3.3 Constraints due to isometricity

So far, although we have been able to adequately describe a curved crease, we have not

imposed any constraints due to the crease being formed by an isometric deformation of a flat

sheet. Before one folds along the crease line, the crease curve is planar (i.e. has no torsion),

1. The letter g used to define a generator has no relation to the “geodesic” subscript g used earlier in
Section 3.2 for curvatures and torsions
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Figure 3.3: Cross section of a crease, indicating the Frenet-Serret and Darboux frames. θ is
the opening angle, and ψ± are the angles between n̂ and û±.

and only has geodesic curvature. Once one has made the fold, the crease curve may develop

torsion, and will have both normal and geodesic curvature when seen as a curve in either

the inner or outer surface. However, as mentioned before, the geodesic curvature does not

change under isometric deformations, so the geodesic curvature as measured in the inner

surface (κg+) must equal that measured in the outer surface (κg−), and must be the same

as the curvature of the originally drawn crease line.

Fig. 3.3 shows a segment of the crease at a point s, viewed along the tangent t̂, with

the normal n̂ and binormal b̂ to the curve oriented horizontally and vertically. The adjacent

“inner” surface on the n̂ side of the curve is designated +. If this surface were horizontal, its

normal tangent vector û+ would coincide with n̂. This surface is instead rotated clockwise

by an angle ψ+. Thus κg+, the component of ~κ tangent to the inner surface, is given by

κg+ = κ cosψ+. This same relation must hold for the outer surface. Since κ and κg are the

same for both surfaces, the angle ψ− must have the same cosine as ψ+. Therefore the two

angles must be equal in magnitude; they either coincide or have equal and opposite ψ, and

so the angle between the two surface normals, i.e. the angle between N̂+ and N̂−, must be

2ψ. The supplementary opening angle θ between the two surfaces is evidently π − 2ψ. The
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normal components of ~κ, denoted κN+ and κN− are likewise given by κN± = ±κ sinψ±.

We note that this local constraint is independent of any twist in the Frenet-Serret or the

Darboux frames. The constraint of equal κg thus fixes the relation between the opening

angle and the angle ψ between the the two frames at every point s. We refer to this as the

“compatibility constraint.”

Using this relation, we may straightforwardly rewrite Eq. (3.6) in terms of the opening

angle θ. Since 2θ is the supplement of ψ, θ′ = −ψ′. Thus for an isometric crease, Eqs. (3.6)

and (3.7) become [38]

κg(s) = κ(s) sin θ(s)/2 (3.9a)

κN±(s) = ±κ(s) cos θ(s)/2 (3.9b)

τg±(s) = τ(s)± θ′(s)/2. (3.9c)

We mentioned earlier that the surfaces on either side must be developable. Even though

it is a well-known fact that developable surfaces are ruled [44], the parametrization given by

Eq. (3.8) does not guarantee developability. In order to do so, the directions in which ĝ±(s)

point must be constrained so that they lie along generators in the surface. This constraint

leads to a relationship between the crease line tangent t̂(s) and ĝ±(s): ~t(s), ĝ±(s), and ĝ′±(s)

must be coplanar [44]. Since ~t(s) and ĝ±(s) are both tangent to the crease surface, this means

that ĝ′±(s) cannot have a component normal to surface. We can express this requirement in

terms of scalar quantities by first writing ĝ±(s) in terms of the Darboux basis:

ĝ±(s) = cos γ± t̂± sin γ± û± (3.10)

where γ± are the generator angles as defined earlier and shown in Fig. 3.2. We then can

take the derivative of Eq. (3.10) and use Eqs. (3.5) to express the result purely in terms of
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the Darboux basis:

ĝ′±(s) = ∓(κg ± γ′±) sin γ± t̂+ (κg ± γ′±) cos γ± û±

+ (κN± cos γ± ± τg± sin γ±) N̂±. (3.11)

Setting the normal component of the above to zero and using Eq. (3.9) yields [38]

tan γ±(s) = −κ(s) cos θ(s)/2

τ(s)± θ′(s)/2 (3.12)

which is our second constraint. We call this the “developability constraint.”

It is helpful to have some intuition on how these constraints connect the geometry of the

crease curve to that of the surfaces. First, one can see in Fig. 3.3 that as a consequence of

compatibility constraint, the binormal vector of the curve must bisect the opening angle of

the crease. This means that when one forms a crease with a particular opening angle, the

direction of the curvature vector of the crease curve is determined.

Second, consider a crease whose crease curve is a finite arc of a circle, so that it has

constant curvature and zero torsion, and a constant opening angle. If one increases or

decreases θ, in order to keep κg the same, the curvature of the crease curve must increase or

decrease (one can see this experimentally by taking a creased ribbon with constant curvature

and pinching the two sides: as one pinches, the crease curves further inward). This also

excludes the possibility of having an opening angle equal to zero, as then the crease curve

will have a diverging curvature.

Finally, we consider the effect of torsion. Taking again the finite arc crease with a constant

θ and zero τ , one sees from Eq. (3.12) that γ± must be 90 degrees, so that if one draws

the generators on the surfaces and then flattens the crease, the generators will everywhere

be orthogonal to the crease curve (see Fig. 3.4a). If now the horizontal finite arc crease

is fixed on one end and lifted on the other, so that it is part of a right-handed helix (and

therefore has positive torsion), Eq. (3.12) now tells us that γ± must be greater than 90
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⌧ < 0

Figure 3.4: Examples of curved creases with different torsions. Curved bold lines indicate the
crease curve, orange and blue surfaces correspond to the inner and outer surfaces respectively,
and thin straight lines indicate the drawn-on generators. The left picture of each pair
is viewed along the crease line tangent, while the right picture is viewed from above the
material after the crease has been flattened.

degrees. If one draws the generators and flattens, when viewed from above the ”roof” of

the crease, the generators will now form chevrons pointing counterclockwise, as seen in Fig.

3.4b. For a left-handed helix (τ < 0), the generators will form chevrons pointing in the

opposite direction, as in Fig. 3.4c. We should note that these chevrons will be symmetric

about the crease line when the opening angle is constant, since Eq. (3.12) says γ+ = γ− in

this case. If one has a varying opening angle, the chevrons will no longer be symmetric (in

the case of zero torsion, γ+ and γ− will be supplementary angles so that the generators in

the flat state will no longer “refract” as they cross the crease line).

With the constraints due to having an isometric crease now fully laid out, it is helpful to

know how many and what quantities need to be specified in order to completely determine

the shape of a crease. Intuitively, if one folds along line with a given curvature profile, and

the opening angle is prescribed a certain profile everywhere along the fold line, it seems the

entire shape of crease should be determined. This is true if one also considers the elastic

energy of the crease, but the geometric constraints alone are not enough. We can see this

by counting the number of quantities needed to describe the crease, and comparing it to the

number of constraints.

The shape of the crease line ~X(s) is fully specified by its curvature κ(s) and torsion τ(s),

as noted in Section 3.2. The outer and inner surfaces are defined by their generators, whose
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directions in space are specified by the generator angles γ±(s) and the opening angle θ(s).

Finally, one most know the curvature of the crease line within either surface, i.e. the geodesic

curvature κg(s). We therefore have a total of six quantities to be specified. However, this

number will be reduced by the isometric constraints. The compatibility constraint will reduce

the number by one, as it is a single constraint relating the orientation of the crease line and

the opening angle. The developability constraint is a single constraint on each surface that

requires them to be developable, and so reduces the number further by two. One therefore

needs to specify three quantities of the original six to determine the shape of an isometric

crease.

For example, suppose one specifies κg, τ , and θ. Eq. (3.9a) will then determine κ, so

that the crease line can be found, and Eq. (3.12) will yield the generator angles, so that the

generators on both sides will be known. If the condition of minimum energy is also included,

then this reduces the number of necessary quantities further by one, which is then consistent

with the expectation mentioned above.

As an alternative approach, one could start by specifying the surface on, say, the inner

side, assuming it is developable. If one constrains a curve with a particular geodesic curvature

profile to lie on this surface, its curvature and torsion will be determined. Furthermore, the

generator angle on the inner surface will also be known without reference to the other side of

the crease. These three quantities are then sufficient to specify the crease. First, θ may be

found from Eq. (3.9a). Then Eq. (3.12) can give the generator angle on the outer surface.

These two procedures will be useful when constructing particular examples of curved creases

in Chapter 5.

As noted in Section 2.1, the energy content of isometric surfaces, such as those on either

side of a crease, depends on their mean curvature H(s, v), as shown by Eq. (2.2). If

one considers a generator at s and its neighboring generator, the surface between these

two generators will be the section of a cone, whose vertex will be the intersection point

of the generators, as shown in Fig. 3.5. Since the mean curvature of a cone at a given
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d(s)

Figure 3.5: Section of a curved crease. Generators are indicated by green lines, the boundary
curve is indicated in black, and purple arrows indicate the surface normal along the crease
line. Locally the geometry of a curved crease surface is that of a cone, as neighboring
generators intersect each other at a point a distance d from the crease line. Thus one can
determine the mean curvature at any point in the surface along a generator using d and the
mean curvature at the crease line, which is related to the crease line’s normal curvature.

point is inversely proportional to the distance from the point to the cone’s vertex, the

mean curvature of the surface at the coordinates (s, v) will be inversely proportional to

d(s) + v, where d(s) is the distance on the surface from the crease point s to the intersection

point. One can calculate d(s) for both the inner and outer surfaces using planar geometry:

d±(s) = ∓ sin γ±(s)/(κg(s)± γ′±(s)).

In order to find the exact expression for H(s, v), we can calculate the mean curvature at

a given v, such as the crease line, where v = 0. The mean curvature then takes the form

H(s, v) = H(s, 0)/(1 + v/d(s)). To determine H(s, 0), we may use Euler’s theorem, which

for a chosen direction, expresses the surface normal curvature κN in terms of the principal

curvatures κ0, κ1 and the angle between our chosen direction and a principal one η [44]:

κN = κ0 cos2 η + κ1 sin2 η. If we choose the direction to be the crease line tangent, then

κN is the normal curvature of the crease line, and if we choose the κ0 direction to be the
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generator at s, then κ0 is zero and η is the generator angle γ(s). So the mean curvature at

the crease line is H(s, 0) = κ1(s)/2 = (κN (s) csc2 γ(s))/2. We can then generalize to both

surfaces of our crease, and find the mean curvature at a general point in either surface:

H±(s, v) =
κN±(s) csc γ±(s)

2(sin γ±(s)∓ v(κg(s)± γ′±(s)))
. (3.13)

We note that in the orientation of Fig. 3.3, H(s, v) is necessarily positive (concave) on the

inner surface and negative (convex) on the outer one.

We can now determine the bending energy of a curved crease using Eq. (2.2). For our

parametrization ~X±(s, v), the area element dA can be written as ‖∂s ~X±×∂v ~X±‖ ds dv [27].

Then the amount of bending energy stored in the sector of the sheet from a segment of the

crease of length ds is given by

dE =
B

2
ds
∑

±

∫
H2
±(s, v) ‖∂s ~X± × ∂v ~X±‖ dv, (3.14)

where B ≡ h3Y/(12(1−ν2)) is the bending stiffness. Calculating ‖∂s ~X±×∂v ~X±‖ and using

our expression for H±(s, v) yields

dE =
B

2
ds
∑

±

∫
(τ ± θ′/2)2 sec2 γ±

4(sin γ± ∓ v(κg ± γ′±))
dv. (3.15)

The integrand has the form A/(B + vC), where A, B, and C are independent of v. Thus

the dv integral from 0 to R is (A/C) log((B +RC)/B +RC):

dE =
B

8
ds
∑

±
∓(τ ± θ′/2)2 sec2 γ±

κg ± γ′±
log

(
sin γ± ∓R(κg ± γ′±)

sin γ±

)
. (3.16)
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CHAPTER 4

FINITE CURVED CREASES IN SHEETS OF INFINITE

EXTENT

4.1 Additional constraints

The discussion in the previous section considered creases in arbitrarily narrow strips. Our aim

is to study creases in an infinite sheet. The requirement that this infinite region be isometric

imposes additional constraints on the crease itself. Although a set of generators defined

along the crease curve give a well-defined surface, this does not preclude the possibility of

nearby generators intersecting each other, which would lead to singularities in the sheet. If

we consider narrow sheets as we did above, this is not an issue, as we can take our sheet to

be narrow enough so that neighboring generators do not have the chance to cross. However,

if we consider infinitely large sheets, we must impose a condition that prevents intersecting

generators. In order to do this, let us consider two neighboring generators in the inner surface

along ĝ+(s) and ĝ+(s+ ds), as shown in Fig. 4.1. As one moves along the crease line from s

to s+ ds, ĝ+(s) will rotate in space to form an angle dω with ĝ+(s+ ds). To avoid the line

along ĝ+(s+ ds) intersecting with the the line along ĝ+(s), the rotation must be clockwise,

so that dω < 0. This rotation can be broken down into two components. If we keep the

generator angle γ+(s) the same as we rotate ĝ+ from s to s+ ds, the generator rotates due

to the curvature of the crease line. This rotation is how much the curve tangent rotates in

the material, given by the geodesic curvature κg(s) ds. Then if we rotate ĝ+ at s+ ds to its

new generator angle γ+(s + ds), the generator rotates due to the generator angle changing

along the curve, given by dγ+(s) = γ′+(s) ds. The sum of these will be the total rotation of

the generator dω, so we must have κg(s) + γ′+(s) < 0. A similar argument can be carried

out for generators in the outer surface, leading to κg(s)− γ′−(s) > 0. These two inequalities

can be written together as

γ′±(s) < ∓κg(s), (4.1)
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Figure 4.1: Rotation of an inner surface generator as one moves along the crease line. As
one moves along the crease line (gray curved line), a material generator (solid black lines)
will rotate in space, measured by the angle dω between the original generator (dotted black
line) and its neighbor. This rotation can be decomposed into two parts. If one transports
the original generator along the crease while keeping the generator angle γ+ the same, the
generator rotates due to the curvature of the crease and aligns with the red dotted line. This
line then rotates in order to line up with the neighboring generator, which comes from the
generator angle changing along the crease. The angle of this rotation is therefore dγ+.

and gives us a constraint at each point along the crease line that prohibits neighboring

generators from intersecting. A similar inequality is presented in [38] for creased ribbons,

and agrees with ours in the limit as the ribbon width goes to infinity. We will refer to this

inequality throughout as the “positive splay condition.”

Up until now we have considered creases in which the crease curve spans the entirety of

the material surface. However, it is possible for the crease curve to have a length smaller

than the size of the sheet, such as the crescent observed in the core of a d-cone, so that

it is localized to a small region, and therefore must terminate within the material. This

termination must occur in such a way so that the surrounding surface remains smooth and

continuous. We will now discuss the conditions that enforce this.

We consider a termination point on the crease at a location denoted by st, and look

at how the previously discussed quantities must behave at this termination point. As one

25



approaches st, the generators on either side must become more and more parallel so that

the two surfaces of the crease meet at a common generator to form a continuous surface.

This means that generator angles must be equal and opposite at the termination point:

γ+(st) = −γ−(st). However, these generator angles cannot be negative, as that would lead

to the generators crossing from one side of the crease to the other. Therefore, we must have

γ±(st) = 0. Geometrically this means that the common generator at st must be parallel to

the curve tangent. Furthermore, as one crosses this common generator, the surface normal

must be continuous. This will be true if as we approach st, the tangent planes of each side

become more parallel and the opening angle becomes larger and larger, so that θ(st) = π.

We can say more about the behavior of τ and θ′ at st by using the positive splay condition.

We first expand our developability constraint, Eq. (3.12), near st:

γ± →
κg · (θ − π)

2(τ ± θ′/2)
. (4.2)

If the leading order behaviors of τ and θ near st are τ(s) ∼ A (s − st)α and θ(s) ∼ B (s −

st)
β+1 + π (so that θ′(s) ∼ (β + 1)B (s− st)β), we see that

γ±(s) ∼ κg(st) ·B (s− st)β+1

2(A (s− st)α ± (β + 1)B (s− st)β/2)
. (4.3)

If we then differentiate and normalize by κg(st), we find

Γ′±(s) ∼ (β + 1)B2(s− st)2β ∓ 2AB(α− β − 1)(s− st)α+β

(2A (s− st)α ± (β + 1)B(s− st)β)2
, (4.4)

where Γ′± ≡ γ′±/κg. We note that the possibility β > α is ruled out, as it entails that

Γ′± → 0, and thus violates the positive splay condition of Eq. (4.1) on the inner surface,

which requires Γ′+ < −1 everywhere. Furthermore, when β < α, Γ′±(s) ∼ 1/(β + 1), which

also does not satisfy the positive splay condition, since β is non-negative. Therefore, in order

to avoid intersecting generators near st, we must have β = α. In other words, the ratio of
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τ/θ′ must approach a constant C as one approaches st. The value of C will be constrained by

the positive splay condition, and will depend on the exact behavior of θ and τ near st, as we

will see in Section 4.1.1. We can then summarize the conditions necessary for a continuous

surface at st:

γ± → 0 (4.5)

θ → π (4.6)

τ/θ′ → C. (4.7)

We note that Eq. (3.12) implies that the first constraint will be automatically satisfied if

the second constraint is true, so in general only Eqs. (4.6) and (4.7) need to be satisfied.

It is reasonable, though not necessary, to also require that the surface of the crease is

smooth everywhere. This means the mean curvature will be continuous everywhere, par-

ticularly at the joining generator. At st, Eq. (3.13) is indeterminate due to our earlier

conditions, as κN±(st) is zero while csc γ±(st) is infinite. This indeterminacy can be re-

solved by expressing H± in terms of τ and θ′ using Eq. (3.12). If we then expand the result

around st, we get

H±(st, v)→ ∓ τ(st)± θ′(st)/2
2(γ±(st)∓ v(κg(st)± γ′±(st))

. (4.8)

We can impose the continuity condition at s = st. However, as mentioned at the end of

Section 3.3, the mean curvature of the outer surface is positive while the mean curvature of

the inner surface is negative. Therefore, in order for H± to be continuous along the line at

which the two sides meet, the mean curvature must be zero at st. Assuming κg is finite at

the termination point, this will be true if both τ and θ′ vanish at st:

θ′ → 0 (4.9)

τ → 0. (4.10)
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4.1.1 Consequences

Even under the non-essential assumptions of nonvanishing κg and continuous mean curvature

H, the termination conditions of Eqs. (4.5-4.7) and (4.9-4.10) impose only weak restrictions

on the crease parameters θ and τ . Here we verify that these termination conditions are

generally sufficient to give concrete realizations of surfaces with terminating creases. In

order to see some of the consequences of having a terminating crease, let us assume the

simplest scalings one can have for θ and τ that obey the above conditions, by doing an

expansion about the termination point st for the generic case where κg(st) 6= 0:

θ(s) = π + Θ′′ (∆s̃)2/2 +O((∆s̃)4) (4.11)

τ(s) = C Θ′′ κg(st)∆s̃+O((∆s̃)3) (4.12)

where Θ′′ ≡ θ′′(st)/κ2
g(st) and ∆s̃ ≡ κg(st) · (s − st). In order to find γ±(s) around st, we

can substitute the above scalings into Eq. (4.2):

γ±(s) ≈ 1

2(2C ± 1)
∆s̃+O((∆s̃)3). (4.13)

As mentioned in Section 4.1, the values C can take are constrained by the positive splay

condition. We can see this by differentiating the above and using the positive splay condition:

1

2(2C ± 1)
< ∓1. (4.14)

We first consider the more restrictive requirement on the inner surface, corresponding to the

upper signs. In order for this inequality to be satisfied on the inner surface, the left hand

side must be negative, so that C < −1/2. Furthermore, we can rearrange the inequality to

get C > −3/4, so that C is bounded both below and above: −3/4 < C < −1/2. Note that

this automatically satisfies Eq. (4.14) on the outer surface.

We finally would like to see how much elastic bending energy is stored in a sector of the
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crease near the termination point. If we substitute in our scaling relations into Eq. (3.16),

using the approximations sec2 γ± ≈ 1 and sin γ± ≈ γ± we get

dE =
B

8
ds̃
∑

±
±
[

(2C ± 1)3Θ′′2(∆s̃)2

2(4C ± 3)
log

(
∆s̃∓Rκg(4C ± 3)

∆s̃

)
+O((∆s̃)3)

]
. (4.15)

4.2 Finite symmetric crease

So far we have considered the behavior of a crease near a termination point in the material.

However, in order to know the energy cost needed to form the crease, we must consider its

global behavior. Since the d-cone core crescent is symmetric, we will consider symmetric

creases which have two termination points. We choose s = 0 to be the symmetry point, so

that the termination points are at ±st. In addition to conditions at the termination points,

there are also conditions τ, θ′, and γ± must satisfy at the symmetry point. By symmetry,

τ(s) and θ′(s) must be odd functions, and therefore must be zero at s = 0. The generator

at s = 0 also has to be perpendicular to the crease, so that γ±(0) = π/2, which is actually

automatically true by Eq. (3.12). Finally, we must satisfy the positive splay condition. As

seen in Section 4.1.1, we may expand Eq. (3.12) (this time around s = 0), differentiate with

respect to s, and write the result in non-dimensional form:

Γ′±(0) ≈ τ ′(0)± θ′′(0)/2

κ2
g(0) cot θ0/2

(4.16)

where θ0 is the opening angle at s = 0. This must obey Γ′± < ∓1.
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CHAPTER 5

EXAMPLES

5.1 Crease with constant geodesic curvature

We now demonstrate a range of realizable surfaces, using several strategies. We consider

specific examples of finite symmetric creases, which obey the conditions outlined in Chapter

4. The first example we consider is a crease formed from a circular arc, i.e. a crease with

constant geodesic curvature. As explained in Section 3.3, the crease shape will be fully

determined if one specifies κg, τ , and θ everywhere along the crease. We choose the simplest

functional forms for θ and τ such that they obey all of the conditions outlined previously:

θ(s) = (θ0 − π)s̄2(s̄2 − 2) + θ0 (5.1)

τ(s) = Cθ′(s) =
4φ

st
s̄(s̄− 1)(s̄+ 1) (5.2)

where s̄ ≡ s/st and φ ≡ C(θ0− π) is the total twist of the crease line from the center to the

tip. We can find constraints on φ, θ0, and st from the positive splay condition. At st, the

result follows from Eq. (4.14), and puts limits on the value of φ: (π−θ0)/2 < φ < 3(π−θ0)/4.

Further constraints can be found by applying the positive splay condition at the symmetry

point s = 0, as discussed in Section 4.2. Furthermore, we have found that if the positive

splay condition is satisfied both at the symmetry point and at the termination points, it will

be satisfied everywhere along the crease. An example of this type of crease is shown in Fig.

5.1a.

5.2 Crease with cylinder on one side

As explained earlier in Section 3.3, the crease shape can also be determined by specifying

one surface and the geodesic curvature of the crease. Here we treat the simple case where

the inner surface lies on a cylinder. The cylinder case is of particular interest, since it only

30



marginally satisfies the positive splay condition. This surface is obtained by wrapping a

flat sheet, and so is developable by construction. We again choose our crease curve to have

a constant geodesic curvature, and so the curve’s shape is fully determined by κg and the

radius of the cylinder L. We take the axis of our cylinder to be along the z-direction, and

parametrize our curve as follows:

~X(s) =

(
L cos

(
sinκgs

κgL

)
, L sin

(
sinκgs

κgL

)
, (1/κg) cosκgs

)
(5.3)

One readily verifies that ~X ′(s) is of unit length and is tangent to the surface of the cylinder

at ~X(s). Furthermore the curvature vector ~X ′′(s) has a component in the tangent plane of

the cylinder at ~X(s) of magnitude κg. In order for our curve to satisfy the condition γ± → 0

as s → st, the crease line’s tangent ~X ′(s) must point along the cylinder axis at ±st. We

must therefore have κgst = π/2 so that the curve spans a half-arc of a circle. Note that the

generators on the inner surface are parallel by construction, so that they automatically satisfy

the positive splay condition. The outer side of the crease will be determined as outlined in

Section 3.3, so that we can specify our crease for any given κg and L. An example of such

a crease is shown in Fig. 5.1b.

We note that at the termination points, our crease does not satisfy the zero mean cur-

vature condition, due to the fact that the cylindrical side has a constant non-zero curvature

everywhere. As argued in Section 4.1, this means that the mean curvature must be discon-

tinuous at the tip. Such discontinuities are common in physical sheets, as when a sheet is

peeled away from a flat, adhesive substrate [45]. This discontinuity does not prevent the

construction of continuous, isostatic deformation around the crease. It leads us to study

sheets with such discontinuities more generally. Therefore, we may consider other examples

where there is a jump in the mean curvature at the termination points.
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(a) (b) (c) (d)

Figure 5.1: Examples of finite curved creases. Curved bold lines indicate the crease line,
orange and blue surfaces correspond to the inner and outer surfaces respectively, and thin
straight lines indicate the generators. Each row corresponds to a different viewpoint of the
crease, with the first row being an off-angle view, the second a view along the symmetry line
of the crease, and the third a view along the generator at which the two sides of the crease
meet. (a) Crease with zero mean curvature at termination points, with κg = 1, θ0 = π/2,
st = π/4, and φ = 3π/8. (b) Crease with a cylinder as the inner surface, with κg = 1 and
L = 1. (c) Crease with mean curvature jump at termination points, with κg = 1, θ0 = π/2,
st = π/4, and φ = 3π/8. (d) Crease with a vanishing geodesic curvature at termination
points, with κg(s) = −(s2 − s2

t ), θ0 = π/2, st = π/4, and φ = 3π/8.
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5.3 Constant geodesic curvature crease with mean curvature

discontinuity

If we relax the zero mean curvature condition at the termination points, the continuous

mean curvature conditions given by Eqs. (4.9) and (4.10) are no longer required. Thus we

no longer need τ and θ′ to vanish at st. We can then choose simpler expressions for θ and τ

such that they only vanish at the symmetry point:

θ(s) = (π − θ0)s̄2 + θ0 (5.4)

τ(s) = Cθ′(s) = −2φ

st
s̄ (5.5)

where again s̄ ≡ s/st and φ ≡ C(θ0 − π) is the total twist of the crease line from the center

to the tip. Similar to the crease described in Section 5.1, φ will have bounds due to the

positive splay condition, this time being (π− θ0)/2 < φ < (π− θ0). We show an example of

this type of crease in Fig. 5.1c.

5.4 Crease with vanishing geodesic curvature

So far we have only considered cases where the geodesic curvature was constant, but we

also can have a varying geodesic curvature and still satisfy our conditions at the termination

points. One interesting case is when κg vanishes at st, so that the crease line straightens as

we approach the termination points. This will affect our termination conditions, as we shall

now see.

The mean curvature near st has the same form as before, given by Eq. (4.8). However,

we now must take into account what happens when κg vanishes at st. Let us assume τ is a

constant at st, and that θ and κ have the leading order behaviors (s− st) + π and (s− st)α

respectively (so θ′ is constant at st as well). From Eq. (4.2), we see that γ±(s) ∼ (s−st)α+1,

so that γ′±(s) ∼ (s − st)α. If we substitute these scalings into Eq. (4.8), we find that the
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denominator vanishes while the numerator does not, so that the mean curvature diverges

at the termination point. In order to avoid this divergence, we must have the numerator of

Eq. (4.8) vanish in such a way that H±(st, v) is constant. Therefore, both τ and θ′ must

vanish at st, as they did when we required H to be smooth. How fast exactly they vanish is

important, as we will now see.

For simplicity, we now assume that τ and θ have the same leading order behavior near

st, i.e. τ(s) ∼ θ′(s) ∼ (s− st)β , so that the numerator of Eq. (4.8) has this same behavior.

Assuming κg near st has the same behavior as above, we can substitute these new scalings

into Eq. (4.2) to find γ±(s) ∼ (s − st)α+1. Differentiating this leads to γ′±(s) ∼ (s − st)α,

so that γ′± has the same scaling as κg. Since γ±(s) vanishes at st faster than γ′±(s) (and

therefore κg(s)), we can ignore it in the denominator of Eq. (4.8), so that the denominator

goes as (s − st)
α. Therefore, in order to have H±(st, v) be a nonzero constant, we must

have α = β. In other words, τ and θ′ must vanish just as fast as κg at the termination

points. This will result in a jump in the mean curvature, since as mentioned before, the

mean curvature of the inner and outer surfaces are of opposite sign. Furthermore, if we have

α < β, so that the numerator of Eq. (4.8) vanishes faster than the denominator, then the

mean curvature will vanish at st, and so will be continuous from one side of the crease to

the other. This actually is a generalization of our zero mean curvature condition for the

non-vanishing geodesic curvature case: τ and θ′ must vanish faster than κg, whether κg

vanishes or not at st. We show an example of this particular crease with vanishing geodesic

curvature in Fig. 5.1d, using the same functional forms for τ and θ as in Section 5.1.
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CHAPTER 6

CREASE ENERGETICS

As noted above, the final shape of the creased surface can be altered by external forcing;

our conditions of isometry are not sufficient to determine the shape. The actual shape with

given forcing is that of minimal bending energy. In this chapter we investigate how the crease

parameters affect this energy.

In order to examine the bending energy resulting from curved creases, we turn back to

our first example of a constant geodesic curvature crease described in Section 5.1. This crease

is described by three parameters: θ0, st, and φ. If we compare to the d-cone, θ0 is related to

the d-cone deflection, and so is a parameter we can control. Then for a given θ0, we can find

values of st and φ which minimize the total bending energy (found by integrating Eq. (3.16)

from one end of the crease to the other), subject to the constraint imposed by the positive

splay condition. An example heatmap of the bending energy is shown in Fig. 6.1.

However, the bending energy also depends on the size of the sheet. This means that the

optimal values of st and φ may in general depend on our chosen size of the sheet. Since

we are considering asymptotically large sheets, we want to be able to minimize the energy

independently of R. In the large R limit, the bending energy is given by

E ≈ B

8

∑

±
∓
∫

ds
(τ ± θ′/2)2 sec2 γ±

κg ± γ′±
log

(
∓R(κg ± γ′±)

sin γ±

)
, (6.1)

which clearly has a logarithmic dependence on R on each side of the crease. We can

separate out this logarithmic dependence by rewriting the integrand above in the form

a±(s) · log(R/d±(s)), where

a±(s) ≡ ∓(τ ± θ′/2)2 sec2 γ±
8(κg ± γ′±)

(6.2)

and d±(s) is the local cone vertex distance defined in Section 3.3. We then separate
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E/B

Figure 6.1: Heatmap of energy for a finite size crease with κg = 1, R = 10, and θ0 = 0.9π.
Cooler colors indicate a smaller energy, with the minimum indicated by a light green cross.
The blank region in the lower right hand part of the plot indicates the region where the
positive splay condition on the inner surface is no longer satisfied.

the logarithm into two terms and integrate each of them separately over the extent of

the crease, resulting in E ≈ B
∑
±A±(logR − D±/A±), where A± ≡

∫
a±(s) ds and

D± ≡
∫
a±(s) log d±(s) ds. Finally, defining log r± ≡ D±/A± and combining the loga-

rithms, we get

E ≈ B
∑

±
A± log

R

r±
(6.3)

Since R is large, the logarithm dominates the prefactor in the expression, which has no

R dependence. If we remove the logarithmic dependence from Eq. (6.3), we can instead

minimize the sum of the prefactors A± in order to find the equilibrium shape of a crease in

the large R limit. An example heatmap of the integrated prefactor is shown in Fig. 6.2a. We

can therefore find values of st and φ that minimize A± extrapolated to infinite R for several

chosen values of θ0, as shown by the blue circles in Fig. 6.2b, and see that as the crease

angle becomes more pronounced, the preferred crease length becomes shorter and the crease

twists more out of plane (this is visually more obvious in the shapes shown in Fig. 6.2c).

36



<latexit sha1_base64="Z10ifIjR84oSGUNegJjIFgH7yuw=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwIWEiinUhFNy4rGAf0IQwmU7aoZMHMzdKif0UNy4UceuXuPNvnLZZaOuBC4dz7uXee4JUcAUYfxulldW19Y3yZmVre2d3z6zut1WSScpaNBGJ7AZEMcFj1gIOgnVTyUgUCNYJRjdTv/PApOJJfA/jlHkRGcQ85JSAlnyz6sKQAfHxNbav3FM35b5ZwzaewVomTkFqqEDTN7/cfkKziMVABVGq5+AUvJxI4FSwScXNFEsJHZEB62kak4gpL5+dPrGOtdK3wkTqisGaqb8nchIpNY4C3RkRGKpFbyr+5/UyCOtezuM0AxbT+aIwExYk1jQHq88loyDGmhAqub7VokMiCQWdVkWH4Cy+vEzaZ7ZzYeO781qjXsRRRofoCJ0gB12iBrpFTdRCFD2iZ/SK3own48V4Nz7mrSWjmDlAf2B8/gCWnJLh</latexit>

✓0 = 0.9⇡
<latexit sha1_base64="8z7FE6LNybiWYupM9pysForYxeE=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwIWEiFrsRCm5cVrAPaEKYTCft0MmDmRulxH6KGxeKuPVL3Pk3TtsstPXAhcM593LvPUEquAKMv43S2vrG5lZ5u7Kzu7d/YFYPOyrJJGVtmohE9gKimOAxawMHwXqpZCQKBOsG45uZ331gUvEkvodJyryIDGMeckpAS75ZdWHEgPj4Gtt199xNuW/WsI3nsFaJU5AaKtDyzS93kNAsYjFQQZTqOzgFLycSOBVsWnEzxVJCx2TI+prGJGLKy+enT61TrQysMJG6YrDm6u+JnERKTaJAd0YERmrZm4n/ef0MwoaX8zjNgMV0sSjMhAWJNcvBGnDJKIiJJoRKrm+16IhIQkGnVdEhOMsvr5LOhe3UbXx3WWs2ijjK6BidoDPkoCvURLeohdqIokf0jF7Rm/FkvBjvxseitWQUM0foD4zPH5B4kt0=</latexit>

✓0 = 0.5⇡
<latexit sha1_base64="GmT3nND2W84/IU7jK7OergTZDvA=">AAAB+3icbVDLSsNAFJ3UV62vWJdugkVwIWFSLHYjFNy4rGAf0IQwmU7aoZMHMzdiCf0VNy4UceuPuPNvnLZZaOuBC4dz7uXee4JUcAUYfxuljc2t7Z3ybmVv/+DwyDyudlWSSco6NBGJ7AdEMcFj1gEOgvVTyUgUCNYLJrdzv/fIpOJJ/ADTlHkRGcU85JSAlnyz6sKYAfHxDbbrDffSTblv1rCNF7DWiVOQGirQ9s0vd5jQLGIxUEGUGjg4BS8nEjgVbFZxM8VSQidkxAaaxiRiyssXt8+sc60MrTCRumKwFurviZxESk2jQHdGBMZq1ZuL/3mDDMKml/M4zYDFdLkozIQFiTUPwhpyySiIqSaESq5vteiYSEJBx1XRITirL6+Tbt12Gja+v6q1mkUcZXSKztAFctA1aqE71EYdRNETekav6M2YGS/Gu/GxbC0ZxcwJ+gPj8wcGOpMZ</latexit>

✓0 = 0.25⇡

(a) (b)
<latexit sha1_base64="Ni7fpVLQRiTZEIvRjRBW9oXTT2k=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKe6KYo5RLx4jmAdklzA7mU2GzMwu8xBCyG948aCIV3/Gm3/jJNmDRgsaiqpuurvijDNtfP/LK6ysrq1vFDdLW9s7u3vl/YOWTq0itElSnqpOjDXlTNKmYYbTTqYoFjGn7Xh0O/Pbj1RplsoHM85oJPBAsoQRbJwUhtoKdN0LM3F20ytX/Ko/B/pLgpxUIEejV/4M+ymxgkpDONa6G/iZiSZYGUY4nZZCq2mGyQgPaNdRiQXV0WR+8xSdOKWPklS5kgbN1Z8TEyy0HovYdQpshnrZm4n/eV1rklo0YTKzhkqyWJRYjkyKZgGgPlOUGD52BBPF3K2IDLHCxLiYSi6EYPnlv6R1Xg0uq/79RaVey+MowhEcwykEcAV1uIMGNIFABk/wAq+e9Z69N+990Vrw8plD+AXv4xsWSJEH</latexit>X

A±/B

(c)

Figure 6.2: (a) Heatmap of A± for crease with κg = 1 and θ0 = 0.9π. Cooler colors indicate
a smaller prefactor, with the minimum indicated by a light green cross. The blank region in
the lower right hand part of the plot indicates the region where the positive splay condition
on the inner surface is no longer satisfied. (b) Parameter values which minimize the bending
energy. The red squares are the values which minimize the the energy for a finite size sheet
with R = 10, while the blue circles correspond to the values which minimize A±. Values
of θ0 used are 0.1 π, 0.25 π, 0.5π, 0.75 π, and 0.9 π, and lighter colored points correspond
to larger values of θ0. (c) Equilibrium shapes of finite creases for different θ0. Bottom row
shows the shape of the crease, which becomes more twisted as θ0 gets smaller.

This increasing twist is also observed in other known creases, such as the narrow circular

creases in [38], where the crease buckles out of plane as one folds along the mid-line. These

trends are also observed when minimizing the energy of finite-size sheets, as shown by the

red squares in Fig. 6.2b.

We can also compare the energies of the different examples constructed in Chapter 5.

For this comparison, we use the shapes shown in Fig. 5.1, whose parameters were chosen so

that they had similar opening angles, crease lengths, and twist. We find that the energies of

the shapes a, c, d are nearly the same, with the energy of the outer surface being around an

order of magnitude larger than the inner energy. The remaining shape, whose inner surface
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is a cylinder, however exhibits a very different behavior. While we chose a cylinder radius so

that the opening angle and twist angle were comparable to those of the other examples, the

crease length will be fixed for a given κg, as explained in Section 5.2. Furthermore, because

the inner surface is a cylinder, its bending energy will not depend logarithmically on R, but

instead linearly, so that the inner energy dominates for large sheets.

We have said in Section 3.1 that a finite curved crease can potentially describe the crescent

observed in the d-cone core, but we have not yet justified why this proves to be better than

previous approaches. In order to do so, we will compare it to the traditional picture of

the d-cone. As described in Section 2.2, the traditional picture treats the outer and core

regions separately, where the outside is an isometric cone whose generators have a common

intersection point, and the core is a region of stress focusing whose size Rc is set by a balance

between bending and stretching. The total (bending) energy of the outer cone region is given

by Eq. (2.3), and exhibits a logarithmic dependence on the sheet size R. As we noted above,

in the large R limit, the bending energy of a curved crease has a logarithmic dependence on

R as well, in the form E ≈ B
∑
±
∫
ds a±(s) · log(R/d±(s)). This is not surprising, since as

explained in Section 4.1, locally each segment of the crease is part of a cone. In fact, if we

compare this expression to Eq. (2.3), we see that at each point s along the crease there is

an effective Rc, which is the distance from the crease to the local cone vertex d±(s), and is

non-zero everywhere along the crease except at the two termination points. The vanishing

of d±(s) at the termination points does lead to divergences of the energy density at these

points, but these divergences are in general integrable, so that the total energy of the crease

will be finite. Additionally, as we showed above, one can fully separate out the R dependence

in the energy, leading to Eq. (6.3), which shows that each side of the crease has a global

effective Rc, given by r±. In the traditional approach, one excludes the d-cone core region

when calculating the bending energy of the overall structure to avoid a divergence at the tip.

However, for the crease, in the zero-thickness limit, its bending energy will be finite without

having to exclude any region around the crease line. This suggests that viewing the d-cone
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as a finite curved crease is more advantageous than previous approaches, as it can describe

the d-cone core crescent along with the entire surrounding material with just its bending

energy, without imposing a cutoff near the crescent.
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CHAPTER 7

DISCUSSION

We have outlined conditions necessary to have a finite curved in an unstretchable sheet,

and constructed several examples of such structures. However, in order to fully justify that

a curved crease can accurately describe the global structure of a d-cone, there are some

features of curved creases that should be cross-checked with observable features of a real

d-cone. We have also only considered unstretchable sheets so far and have not discussed

creases in finite-thickness materials. Furthermore, we have not directly addressed how our

approach may help understand the observed scaling of the d-cone core radius, and how it

might reconcile with the energy balance arguments put forth so far to determine the core

radius.

Since our crescents successfully produce the qualitative shape of a d-cone, and since we

expect the d-cone shape to come to a fixed limit asymptotically, the crease model seems to

be a good way to get testable predictions about this shape. Certain qualitative tests already

appear feasible. First, as described in Section 3.3, the binormal vector of the crease line b̂

will be parallel to the line bisecting the opening angle of the crease. This means the normal

vector of the crease line n̂ must be perpendicular to this bisector. If one measures the shape

profile of the d-cone core crescent, n̂ can be determined everywhere along the crescent. One

can then measure the opening angle profile, determine its bisector along the crease, and

compare it to n̂. A second test involves the curvatures of the surfaces on either side. One

can measure the mean curvature profile of the surface, particularly at the symmetry line

of the crescent, where the generators will be orthogonal to the crescent. At the crescent

itself, the mean curvature will be just half the normal curvature κN . Then combined with

the opening angle θ and the crescent curvature κ at the symmetry point, one can verify

whether the compatibility condition of Eq. (3.9b), i.e. κN± = ±κ cos θ/2, holds on both

sides. A similar analysis could also be done at any point in the surface by comparing to

the expected mean curvature given by Eq. (3.13), though one would also have to know the
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generators in the surface. A third observation involves the tip of the crescent. Our analysis

shows that the mean curvature of a crease with a non-negative κg cannot change sign except

at the termination point, and the generators must be parallel to the tangent vector there.

This implies that the crescent line points along the inflection line of a d-cone. Finally, the

curvature κ(s) and torsion τ(s) of the crescent can be determined from the measured crescent

profile, as well the opening angle θ(s). Our construction would then be able to infer the outer

shape and compare it with the expected circular outer shape of a real d-cone.

We have so far only talked about the energy cost due to bending of the sheet around

the crease. If there were no external forces involved, such as from folding along the crease

line or confining the sheet, the equilibrium shape of the material would just be a flat sheet.

When the crease forms, the surrounding material bends and acquires elastic energy, but the

formation of the crease itself in the material must cost some amount of energy as well. One

can account for this, for instance, by assigning the crease a stiffness and an equilibrium

angle at which the crease’s energy cost is minimized, as done by [38]. Additionally, in real

sheets the thickness is no longer zero, and there will be stretching in addition to bending,

which will be localized around the crease. There are two known cases which account for

stretching near a line singularity in a thin sheet. The first is the stretching ridge described

in Section 2.1. However, a stretching ridge is always straight, and so cannot account for

the curvature of the crease line. The other case is known as the ring ridge, which appears

when one deforms a spherical shell until a dent forms [46]. In the formation of this ridge,

the ring will radially move inward, resulting in a compressive strain along the circle that is

linear in the ridge width. This differs from the stretching ridge, where the strain is due to a

transverse displacement of the ridge line, and so is quadratic in the ridge width. While the

curved crease does not exactly map to the ring ridge, in the nearly-flat case, a curved crease

will be a finite arc of a circle, in which case a similar analysis can be applied.

If we consider a curved crease as a segment of a ring ridge whose width is w, the induced

strain γ will be proportional to κgw. Since the area is proportional to stw, the stretching
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energy is of order Es ∼ (B/h2)γ2stw ∼ Bκ2
gw

3st/h
2. There is also a bending energy due

to the ridge width, which is of order Eb ∼ Bw−2stw ∼ Bst/w. Minimizing the sum of

these two yields an optimal ridge width of w ∼ (h/κg)
1/2, similar to that of a ring ridge.

Extending this analysis to a non-flat crease is not straightforward, since as one decreases the

opening angle, the crease line’s curvature is no longer constant and its torsion is no longer

zero. This is demonstrated in Fig. 6.2b, as we see that the twist of the crease is comparable

to the angular extent of the crease. Therefore, we do not treat the general case here.

In Chapter 6, we discussed the subtlety of minimizing the bending energy in the asymp-

totically large R limit, as the equilibrium shape of a crease will in general depend on the

sheet size. It would seem the same should be true for a d-cone. Experiments and simula-

tions are limited in the sheet thickness-to-size ratios they are able to probe, and so cannot

explore the asymptotically large R limit. While others have consistently observed the core

size scaling Rc ∼ h1/3R2/3, this may not be the true scaling for asymptotically large sheets.

Therefore, it is possible that if previous studies were carried out with a much larger dynamic

of thickness-to-size ratios, one would observe a core size is proportional to the thickness,

which would be consistent with energy balance arguments.

Finally, we would like make some comparisons between our curved crease structures and

d-cones. We have shown several examples of terminating creases in Fig. 5.1, which all have

crease lines similar to the observed core crescent. However, the outer behavior is clearly

different: the outer surfaces are not conical, but instead flatten out towards the symmetry

line of the crease. This is to be expected, since we do not implement any constraints to

support the other side like in a d-cone, but instead constrain the shape of the crease line.

One could enforce the outer surface to be a cone geometrically, but one must be careful

about the liftoff region, as this occurs on the outer surface, so the entire outer surface of the

crease cannot be a cone. One could also adjust the functional forms for κg, τ , and θ in order

to adjust the curvature of outer surface while still satisfying the termination conditions.

However, we are still forced to acknowledge that the crease picture is incomplete, in terms
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of determining the length of the crease line. While we are able to find equilibrium shapes of

curved creases, the finite thickness of the sheet is never considered, and so we cannot expect

to learn about the dependence of the crescent length on the thickness without something

additional.
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CHAPTER 8

CONCLUSION

We believe our approach of treating the d-cone core crescent as a curved crease may give new

insight into understanding the energetics of the core region. One does not have to separate

the core region from the outer conical region as previous approaches do. This seems more

promising to understanding why the core radius could have any dependence on the outer

dimensions of the sheet. Furthermore, there are other similar structures that may be studied

by this approach. An example is the Pogorelov ring ridge: when one deforms the dimple

more and more, at some point it is energetically favorable for the ring to buckle, forming a

polygonal ridge with straight ridges meeting at sharp corners. These corners have similarities

to the d-cone core crescent. Another example are the forced vertices studied by Gottesman

et al [35]. These are formed in a way similar to that of a d-cone, but may exhibit different

core radii based on the forcing protocol. By examining the exact geometry of the crescent

via curved creases, we hope the observed scaling of Rc can be properly reconciled.
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