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Long hydrocarbon chain polymers dissolved in a liquid qualitatively alter the way the liquid
moves and transmits forces. The basic origins of this behavior can be understood geometrically
by recognizing that a polymer chain resembles a random walk. The spatial distribution of atoms
may be described by scaling properties and quantified using the notion of fractal dimension and
dilation invariance. The strong thermodynamic and hydrodynamic interactions of polymers may be
accounted for in terms of the intersection properties of fractal objects. These intersection properties
show why polymers exclude flow as well as one another from their interiors, despite their arbitrarily
small interior concentration. Self avoidance decreases the fractal dimension of a polymer. The origin
of this decrease and conditions for its occurance are explained. From these geometric properties,
scaling laws describing how osmotic pressure, diffusion and stress relaxation depend on molecular
weight and concentration are explained.

I. INTRODUCTION

Why should a physicist be interested in polymers?
They do not hold the key to vast sources of energy as
atomic nuclei do. They do not defy the intuition with ul-
trasmall dissipation as superconductors and superfluids
do. They do not reveal subtle new nonabelian symme-
tries as do subatomic particles. Nor do they hold secrets
about the origin or fate of the universe. Polymers are
just ordinary matter—just insulating organic molecules.
These molecules are merely larger than usual and are in
the form of chains of small subunits. Yet these chain
molecules have ways of interacting unmatched in other
forms of matter. The study of polymers over the last
few decades has forced us to broaden our notion of how
matter can behave—how it can organize itself in space,
how it can flow, and how it can transmit forces. These
new behaviors arise from a few qualitative features of the
polymer molecule’s structure. The potential for shap-
ing these phenomena is just beginning to be realized as
the power of synthetic chemists to control the molecular
structure increases.

The purpose of this introductory essay is to convey an
understanding of how polymer liquids differ from other
liquids and from other forms of condensed matter. Ex-
cellent treatments exist already (Jannink et al. 1992),
notably Scaling Concepts in Polymer Physics by P. G.
deGennes (DeGennes 1979). Here we adopt a geometric
approach, exploiting the “fractal” structure of the poly-

mers. This enables us to provide an economical and uni-
fied overview of the phenomena treated in greater depth
in these books. As much as possible we shall attempt to
account for the interaction of polymers with their sur-
roundings by the mathematical laws describing the in-
tersections between two fractal structures. We begin by
recalling the scaling properties of any flexible chain of
randomly-oriented links, noting that such a random-walk
structure has the spatial scaling properties of a fractal
object as defined by Mandelbrot (Mandelbrot 1982). We
shall then survey the important ways in which fractal
structures, including polymers, interact with their envi-
ronments. This leads to a discussion of the thermody-
namics and hydrodynamics of a polymer solution. With
the fractal properties in mind we discuss the interac-
tion of a random-walk polymer with itself, finding that
these interactions change the spatial arrangement of the
molecule considerably. Having described the behavior of
individual polymer molecules, we can discuss the behav-
ior of solutions, notably those where the polymer chains
interpenetrate strongly. The spatial, energetic and dy-
namic behavior of these solutions can be understood in
its major outlines from the fractal properties of isolated
polymers treated earlier. We collect in Table I the main
quantities used for this discussion.

∗This article is adapted from the author’s chapter in La Juste Argile, M. Daoud and C. Williams, eds. (les editions de physique,
Les Ulis France 1995), to be published in English as M. Daoud and C.E. Williams (Eds.): Soft Matter Physics (Springer-Verlag,
Berlin Heidelberg 1999)
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II. RANDOM-WALK POLYMER
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FIG. 1. Top: Detail of a polystyrene molecule ((CH–
C6H5)–CH2)n) as it might appear in a good solvent .
Each sphere represents a carbon atom and one or two
small hydrogen atoms attached to it. The distance be-
tween connected atoms is about 1.4 Angstroms. The
chemical bonds are superimposed on one repeating unit
or monomer, and on a section of the chain backbone.
The backbone bonds may rotate freely. A few successive
backbone repeat units are labeled 0, 1, 2, ... . The vec-
tor ~a for a four-monomer segment is shown. This struc-
ture was generated by a Monte Carlo computer simula-
tion(Mondello et al. 1991), which simulates the random
rotations of the bonds as they might occur in solution.
The simulated molecule has about 1/20 the mass of a
polymer in a typical styrofoam cup. Bottom: Chemical
diagram of two repeating units of polystyrene.

Figure 1 shows a close-up of polystyrene, the best
studied polymer molecule and one of the most common.
The picture suggests the many intricacies controlling the
structure and interactions of these molecules with them-
selves and with their solvent environment. From these

intricacies we note two simple features. First, the carbon-
carbon bonds along the chain backbone can rotate. Sec-
ond, the successive bond angles of the backbone chain
are bent, so that the chain is flexible. This means that
the vector ~a linking the first and last atoms of the seg-
ment shown is nearly unaffected by the direction of the
preceding segment along the chain. This means that the
overall shape of the polymer can be represented as a se-
quence of n vectors ~ai that vary randomly and are statis-
tically independent of each other1. A typical polystyrene
molecule might have a hundred segments of this size;
one can make polystyrene molecules containing 10,000
or more such segments. Thus the overall structure of the
molecule is apparently that of a long, random walk in
space.

To gauge the overall size of a large polymer, we recall
familiar properties of random walks. We expect longer
polymers to extend over larger distances in space. For
random walks we can find this relationship in a quanti-
tative way. The root-mean squared distance

√
〈r 2
n 〉 gives

the typical size of a walk:
√
〈r 2
n 〉 =

√
na. The typical

size is proportional to the square root of the chainlength
n. Since a random-walk polymer of n segments is like a
random walk of n steps, the same scaling law applies to
these polymers2.

The random-walk structure of flexible polymers has
an important consequence that accounts for many of the
distinctive properties of polymers: they are tenuous. To
explain this notion, we consider a sphere of radius R
much larger than our elementary segments a but much
smaller than the entire polymer coil. The sphere contains
monomers and solvent; since the liquid has a well-defined
density, the amount of matter inside is proportional to
R3—i.e., the volume of the sphere. But the fraction φi
of this volume occupied by monomers is very small. The
piece of chain in the sphere varies in length as the chain
fluctuates. But the average number n(R) of segments
is roughly that number whose typical size

√
〈r 2
n 〉 is the

sphere radius R. Thus, n(R) ' (R/a)2. Knowing how n
varies withR, we can readily deduce how the volume frac-
tion φi depends on R. If each of the n polymer segments
displaces volume v in the solution then φ ' vn/R3. Since
n grows as R2, the volume fraction φ scales like 1/R: as
the sphere is made larger, the density of polymer within
it decreases indefinitely. If the sphere is several hundred
Angstroms in size, the proportion of polymer inside may
be only a fraction of a percent. We describe objects with
such arbitrarily low density as “tenuous”. Large poly-
mers in a solution often amount to no more than a dilute
impurity, whose volume fraction is as small as in this

1Though the statistical independence of the segments is not quite complete, it becomes rapidly more so as one considers longer
segments. For the time being we shall suppose that the segments fluctuate completely independently.

2In what follows, we shall see that real polymers are often not exactly random-walk polymers, so that this proportionality is
somewhat altered. For the time being, we’ll confine our discussion to random-walk polymers.
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sphere. But as we shall see below, this vanishingly small
amount of polymer can exert a major influence on certain
liquid properties.

These tenuous polymers fit the definition of a fractal
object. A fractal object is an assembly of particles dis-
tributed in space in such a way that the average number
of particles n(R) within a sphere of radius R surrounding
an arbitrary particle varies as R to some fixed power D
called the “fractal dimension” (Mandelbrot 1982)3 Any
fractal object is tenuous: the average volume fraction
φ(R) in the sphere is v n(R)/R3, which varies as RD−3.
Whenever D is smaller than 3, as it is in a fractal, the
power is negative and φ becomes arbitrarily small. Our
reasoning from the last paragraph implies that random-
walk polymers are fractal objects with fractal dimension
D = 2. One may deduce several important features of
how polymers behave in a liquid using only their fractal
property.

III. FRACTALS IN SOLUTION

R

FIG. 2. A liquid containing fractals. Represented are
two linear polymers, a branched polymer and a colloidal
aggregate. Each has been trimmed to fit into a spherical
pervaded volume of radius R, shown as shaded regions.
For comparison a cloud of dispersed monomers from one
of the polymers is also shown.

We now imagine many fractal objects floating in so-
lution as sketched in Figure 2 . In this section we shall
find that depending on their D values, two fractals in
this solution show one of two qualitative different types
of interaction. They may be “mutually transparent” and
readily interpenetrate each other, or they may be “mu-
tually opaque” and strongly resist interpenetration. Our

main interest is the case where these objects are poly-
mers. But we shall try to make our reasoning applicable
for any connected fractal structures, with general dimen-
sion D. In this way our conclusions will be applicable
to several types of fractal structure that impart special
properties to liquids: random-walk and rigid linear poly-
mers (Elias 1984), branched polymers (Daoud 1995), and
colloidal aggregates (Witten et al. 1986).

We shall suppose that the constituent particles have
size a, and that all the fractals have the same size R.
For definiteness we can imagine that these had been
made by cutting out spherical volumes from a fractal
much larger than R. The region within each sphere
is often called the pervaded volume of the object. For
the time being we shall treat each fractal as a frozen
object with no internal motion. We may apply the
fractal law n(r) = (constant)rD for r = a to deduce
n(R) ' (R/a)D. Each type of fractal has its own value
of the fractal dimension D, so that the n(R) for differ-
ent types of object may be quite different. We imagine
that the concentration of objects is roughly as suggested
in Figure 2: the distance between objects is somewhat
larger than their size R. Since each of these objects is
tenuous, the overall volume fraction of particles is very
small. In what follows we shall focus on the limiting be-
havior as R becomes indefinitely large compared to the
particle size a.

Our problem is to gauge how much these few fractals
influence the macroscopic properties of the liquid. One
basic influence is their thermodynamic effects, seen. e.g.
, through the osmotic pressure (Reif 1965). If the objects
are confined in part of the solution by some membrane
that allows the solvent but not the objects to pass, the
objects exert an outward average force on the membrane.
The force per unit area is the osmotic pressure. Osmotic
pressure measurements of polymer solutions are a routine
laboratory procedure. Even if the objects exerted no in-
fluence on each other, there would be osmotic pressure,
just as there is pressure in an ideal gas of noninteract-
ing atoms. But just as the pressure in a real gas differs
from the ideal gas presure, so the osmotic pressure in our
solution of objects is not quite the ideal pressure. The
difference reflects the influence of the objects upon each
other.

These objects influence each other because no two par-
ticles can be in the same place at the same time. That
means that the objects cannot be positioned arbitrarily
in the solution. If we did position them arbitrarily, we
would sometimes create illegal configurations in which
two or more constituent particles intersected. One way
to construct a valid state of the solution is to start by po-
sitioning the objects completely at random within it and

3The sphere must be much larger than the size of a particle and much smaller than the overall size of the object. One cannot
hope to meet both of these conditions arbitrarily well unless the object contains arbitrarily many particles.
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then simply removing all the objects that make illegal
intersections. When the illegal configurations have been
discarded, each object has in effect been pushed out of the
excluded volume around the other objects. This reduc-
tion of accessible volume increases the osmotic pressure
exerted by the objects. The fraction of objects removed
for this reason is just the fractional increase in osmotic
pressure due to interactions. Thus to gauge the impor-
tance of interactions, we may look at an arbitrary object
in the solution, and ask what is the probability that it
will be discarded because it intersects another.

A convenient way to treat the discarding process is via
the “pair distribution function” g(r). To define g(r) we
arbitrarily designate a “home particle” near the center
of each fractal object. Then g(r) means the probability
that two objects whose home particles are r apart are in
a legal, nonintersecting configuration, which survives the
discarding process. If two solid spheres of radius R were
placed at random in a very large volume Ω, all separa-
tions r < 2R would be illegal and all larger separations
would be legal. That is, g(r) = 0 for r < 2R and g(r) = 1
for r > 2R. The probability of an illegal intersection is
simply the illegal volume 4

3π(2R)3 divided by the total
volume Ω. This all-or-nothing picture is not true for
fractals. When they are placed close to each other they
may nevertheless avoid each other: g(r) is greater than
zero even for r < 2R. The overall discarding probability
is simply that for the solid spheres times the average4of
(1 − g(r)), i.e., [〈1− g(r)〉r<2R ( 4

3π(2R)3)]/Ω. The nu-
merator in [...] is called the mutual excluded volume Vt
of the two objects in question. If the solution contains
a large number of objects N , the fractional increase in
osmotic pressure is simply half the fractional volume ex-
cluded to each one: viz. , 1

2NVt/Ω. Two neighboring frac-
tals have nearly empty solvent in the overlapping regions.
Yet the probability of intersection (1− g(r)) can still be
important. Whether this probability is high or low de-
pends on how the particles are arranged. To illustrate
this point, let us consider two extreme arrangements with
contrasting intersection behavior. In the first arrange-
ment, the n particles of each object are distributed com-
pletely at random within a sphere of radius R. Thus each
fractal is replaced by a structureless cloud with the same

small internal volume fraction φi as the original fractal.
If the separation r between the clouds is near zero, the
two clouds overlap completely. The probability that a
given particle of the first cloud intersects is essentially
the volume fraction of the second cloud5 φi. This prob-
ability is much less than unity in a fractal object, as we
have seen. But the average number of particles in the
first cloud that intersect is the sum of this small proba-
bility for each of the n particles in the first cloud. The
average number I is thus n times the single-intersection
probability, i.e., I ' nφi ' n2(a/R)3. Using the fractal
law: n ' (R/a)D, the average number of intersections is
roughly I ' (R/a)2D−3. If D > 3/2, I becomes arbitrar-
ily large for sufficiently large R. Random-walk polymers,
with D = 2, are in this category.

Naturally the probability g(r) of no intersection is very
small for such clouds6. The same reasoning holds if the
two clouds are displaced by some distance r < 2R: the
average number of intersections is still arbitrarily large
compared to 1. Thus the survival probability g(r) re-
mains much smaller than 1 for all r < 2R. These
clouds must create osmotic pressure in the solution just
as though they were solid spheres of radius R. This
solid-sphere behavior emerges no matter how tenuous the
clouds are, provided R and thence n are large enough
and provided D > 3/2. Even if we halve the size of the
constituent particles of a large cloud, there is no cor-
responding decrease in the excluded volume Vt. This
volume changes arbitrarily little. There are so many ille-
gal intersections that even when their number is cut by
a large factor, the chance of escaping from all of them
remains negligible.

This solid-sphere behavior can be greatly weakened by
re-arranging the n particles of our original fractal ob-
jects. To show this, we now arrange our particles into
solid square rods. Each rod must thus have a width w
such that the volume of the rod is equal to that of all the
particles: 2Rw2 ' a3n. Naturally, this width is much
smaller than the length 2R. We may take the home par-
ticle to be at the center of each rod. If the two rods are
spaced at separation r < w, then of course g(r) = 0. But
if r is any fixed fraction of the radius R, g(r) is close to
1. Two see this, we consider Figure 3, a picture of the

4Explicitly, we mean the average over all separations R:

〈1− g(r)〉r<2R ≡
∫
r<2R

d3r(1− g(r))∫
r<2R

d3r 1
.

5More precisely, φi is the probability that a given point is occupied by a particle. The probability that some particle intersects
a given particle is 8φi.

6Specifically, the probability of no intersection for a given particle of the first cloud is (1 − φi). The probability that all n
particles do not intersect is the product of the (independent) probabilities for each of the n particles: i.e., (1− φi)n. For large
n and small φi this product becomes exp(−nφi) ' exp(−I). When the average number of intersections I is large, the survival
probability g(r) is very small.
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two rods with r = R/2.

r

FIG. 3. Two rods of length 2R whose centers are sepa-
rated by R/2. The sphere indicates the possible orienta-
tions for the rod on the right. The shaded area suggests
forbidden orientations which would intersect the other
rod.

From the picture it is clear that the rods may eas-
ily avoid each other. For any typical orientation of the
first rod, the second rod may have almost any orientation
without hitting it. Since all orientations are equally likely
a priori, the probability that the second rod would have a
forbidden orientation is proportional to the shaded frac-
tion of the sphere in the Figure. This fraction is small;
thus the probability g(r) that two randomly oriented rods
would not intersect is near unity. It is much larger than
it was for the two clouds. Accordingly, the excluded vol-
ume is much smaller than for the clouds. To work out
the allowed orientations and thus the excluded volume
is a classic exercise (Onsager 1949). The result is that
1 − g(r) ' w/r, compared with 1 for the clouds. The
average 〈1− g(r)〉 is roughly w/R. Thus Vt ' (w/R)R3,
compared with R3 for the clouds.

The above examples show that it is a subtle task to
gauge the strength of osmotic interactions of our fractal
polymers. Even simple rearrangements of the particles
can have a big effect on the interaction strength. Hap-
pily, though, the intersections of fractals (without any re-
arrangements) can be readily analyzed. Thus we consider
the g(r) of two fractals with dimensions D1 and D2, both
made from particles of radius a. One way to infer this
g(r) is by analyzing its effect on the number of intersec-
tions I(r). In fractals, unlike clouds, these intersections
are not statistically independent. If one intersection oc-
curs at some point, many others must occur near it. We
denote the number of extra intersections by M . That is,
M is the number of intersections for those objects which
have at least one intersection.

This M can be used to find information about our
desired probability g(r). We consider two fractals sepa-

rated by a distance r of order R. Since they have been
placed completely at random, the average number of in-
tersections I(r) is no different than if they were uncorre-
lated clouds. But since these objects are fractals, these
intersections occur in large groups, and there is some
probability—namely g(r)— that there is no intersection
at all. The average number of intersections can be ex-
pressed as the probability of an intersection (1 − g(r))
times the number intersections, given that there is at
least one. We call this M(r); thus I(r) = (1−g(r))M(r).

This scheme allows us to understand the g(r) of the
clouds and the rods discussed above. For the clouds
there is no difference between I(r) and M(r). The av-
erage number of intersections M if there is known to be
one is virtually the same as the overall average I. Thus
I(r) = (1 − g(r))M(r) becomes I(r)/M(r) = 1 − g(r).
Since the left side is nearly one, g(r) must be much less
than one, as found above. For the rods, I(r) is un-
changed. But the number of extra intersections M is
different. For example if the two rods cross at right an-
gles, the number of intersections is (w/a)3. Since in-
tersecting rods typically intersect at some finite angle,
the average M is also of order (w/a)3. Now, we recall
that w2 ' na3/R, and I ' n2/R3 ' w4/(a3R). Thus
(1 − g) = I/M ' w/R, in agreement with our previ-
ous conclusion. Intersections must be rare, since any
intersection that does occur implies a number of extra
intersections that is much larger than the average.

For two general fractals M and I are of the same order
of magnitude, but not identical. Extending the reasoning
above, I ' n1n2/R

3 ' (R/a)D1+D2−3. If this exponent
is negative, then the average number of intersections de-
creases indefinitely as R increases. Then the probability
of intersection 1 − g(r) is also indefinitely small. The
fractals interfere with each other hardly at all for most
r < R. We say that fractals with D1 +D2 < 3 are mutu-
ally transparent in three-dimensional space. On the other
hand if D1 +D2 > 3, the average number of intersections
I is large. The probability of intersection, though smaller
than for two random clouds, is still substantial. For ex-
ample if r = 1

2R, the legal probability g(r) is a fixed
number that does not go to zero or to unity as R → ∞.
Thus non-transparent fractals can interpenetrate much
less than transparent fractals, where g(r)→ 1. But they
can interpenetrate much more than if their particles were
rearranged into random clouds; there g(r)→ 0.

The mutual excluded volume of two objects of size R
is the solid-sphere excluded volume times the average
〈1− g(r)〉, as noted above. Since g(r) neither approaches
0 or 1 for most of the sphere volume, its average must
also be some finite, nonzero fraction. Thus these fractals
have an excluded volume that is a finite, nonzero fraction
of the solid-sphere excluded volume, despite their tenu-
ous structure. We term such fractals mutually opaque.
We conclude that two fractals may interact in one of two
qualitatively different ways. If D1 + D2 < 3 they are
transparent, and have a mutual excluded volume much
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smaller than their pervaded volume. If D1+D2 > 3, they
are opaque and have a mutual excluded volume that is a
fixed fraction of their pervaded volume7.

Whenever two fractals are mutually opaque, their spe-
cific fractal dimensions D1 and D2 are not important in
determining their excluded volume Vt. The size of their
constituent particles is also unimportant. Only their
overall size R is important. The ratio Vt/R

3 must ap-
proach a finite limit as R goes to infinity. Another way
to express this scaling is to consider the solid spheres
that would produce the same osmotic pressure as the
fractals in question. Thus every population of fractals of
size R also has a “thermodynamic radius” Rt. This Rt
is defined to be radius of solid spheres that have exactly
the same excluded volume as the fractals—by definitiion,
Vt = 4π

3 (2Rt)3. Since for opaque fractals Vt ' R3, this
means that their “thermodynamic size” Rt is compara-
ble to their geometric size R. The ratio of Rt to R is an
important characteristic of any given type of mutually
opaque fractals, including polymers; we shall return to it
below.

With these properties of fractal intersection in mind,
we may readily determine the order of magnitude of the
interactions in a polymer solution, as measured, e.g. , by
osmotic pressure. We have noted that the excluded vol-
ume Vt directly influences this pressure. Specifically, we
may express the pressure described above in terms of the
number of fractals per unit volume, cp = N/Ω. As noted
above, the osmotic pressure Π for small cp is given by
Π ' cpkT [1 + 1

2Vtcp]. The front factor, proportional to
the absolute temperature T , is simply the osmotic pres-
sure of an ideal solution of noninteracting objects. Since
the coefficient Vt is roughly the volume within a polymer
coil, R3, the interaction term becomes comparable with
the ideal term when the volume per coil, 1/cp, is compa-
rable to the pervaded volume within a coil, 4

3πR
3. This

behavior is well documented in practice. The concen-
tration at which the interaction term becomes equal to
the ideal pressure is often called the “overlap concentra-
tion” c∗p. Qualitatively, our dilute solution of polymers
generates much more osmotic pressure than if the chains
were collapsed into a compact mass of monomers. Our
random-walk polymers produce osmotic pressure qualita-
tively as though the large pervaded volume within each
coil were completely filled with monomers. Gram for
gram, the fractal structure of a polymer makes it inter-
act qualitatively more strongly with its neighbors than it
would in a compact, nonfractal form. Analogous strong
interaction occurs with the fluid solvent itself, as we now
explore.

IV. DIFFUSION AND FLOW NEAR A FRACTAL

One fundamental way a polymer interacts with its fluid
surroundings is by modifying the flow of this fluid. This
modification is important. It leads to the thickening of
fluids like motor oil, shampoo or salad dressing. The
same principles control a simpler phenomenon: the ab-
sorption of a diffusing substance by the polymers or other
fractal absorbers. The diffusing substance might be a
small-molecule solute that sticks to the fractal on con-
tact. It might be some electronically excited molecule
that diffuses through the liquid and de-excites when it
encounters the fractal (DeGennes 1982). All of these dif-
fusers can be described as a substance with concentration
u(r) initially distributed uniformly throughout the solu-
tion at some concentration u0. Whenever a particle of
this substance encounters the fractal, it disappears. We
wish to know how the fractal structure influences the rate
of disappearance.

The motion of a diffusing particle is a random walk.
Thus the track that such a particle follows has the same
fractal properties as a random-walk polymer: both have
D = 2. The encounters between a diffusing particle and
a fractal may thus be viewed as the intersection of two
fractals. In this view, the tracks of the diffusing particles
are a tangle of intersecting random walks whose lengths
increase steadily with time. These walks would fill space
uniformly were it not for the fractal absorber. But with
this adsorber, any particle that touches the fractal must
disappear. Thus the random walk representing its fu-
ture motion must be removed. The remaining random
walks are no longer uniform; instead, their density near
the fractal is depleted. By analyzing this density we may
understand the rate of adsorption. If there is little modi-
fication of the diffusing density, there is little adsorption.
The most efficient adsorber that can fit within a distance
R of a given center is a perfectly absorbing sphere of
radius R.

As before, it is convenient to designate a home parti-
cle on the fractal adsorber. We now consider an arbitrary
point at a distance r from the home point. Despite the
absorption we expect some of the walker’s tracks to re-
main at r, as shown in Figure 4. The density of such
walkers relative to the initial density is the probability
that the walker at r has not been removed by adsorp-
tion. This probability is the probability that the random
walk representing its past has not intersected the frac-
tal. This probability is precisely the g(r) discussed in
the last section. The fractals in this case are the ad-
sorbing fractal, with dimension D, and the random walk,
with dimension 2. As we saw above, this g(r) depends
on the fractal dimensions. If D + 2 is less than 3, the

7“Borderline” fractals, with D1 +D2 = 3, are neither transparent nor opaque in general and must be treated on a case-by-case
basis.
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two are mutually transparent: g(r) ' 1. virtually all
the walkers in the pervaded volume of the fractal never
touch the fractal. Their density u is thus virtually unaf-
fected: u(r) ' u0. But if D+2 is greater than 3, the two
are mutually opaque, and g(r) is substantially smaller
than 1 for most points r within the absorbing fractal.
All connected fractals have D ≥ 1 and thus show opaque
behavior. For all such fractals, including random-walk
polymers, the diffusing density is substantially depleted
throughout the volume of the absorber.

FIG. 4. An absorbing sphere in a uniform sea of random
walkers. The density of walkers in the central region
was initially uniform. Then all walkers that intersected
the absorber were removed. This results in a depletion of
density in the vicinity of the absorber. A fractal absorber
with dimension D > 1 produces a similar depletion re-
gion.

This depletion implies a high rate of adsorption. To
see this, we focus on that distance r such that g(r) = 1

2 .
The fractal must absorb at least as fast as a sphere of
radius r that absorbs half the particles that hit it8. But
this sphere adsorbs at a rate comparable to that of a per-
fectly absorbing sphere of radius r. Moreover, this r is
some fixed fraction of the fractal’s radius R. These com-
parisons lead to the conclusion that our fractal absorbs at
a rate comparable to that of a perfectly absorbing sphere
of the same size as the fractal. As with the mutual inter-
actions discussed previously, this strong absorption must
emerge for a large enough fractal regardless of how small
(or how weakly absorbing) its constituent particles are.
The indefinitely large number of intersections between
mutually opaque objects compensates for any such weak-
ness. A fractal of sufficient size R absorbs at the same
rate as if it were a perfectly absorbing sphere of some

fixed fraction of R.
The interaction of a fractal with a gentle flow in the

surrounding liquid is similar to its interaction with a dif-
fusing density. If the flow is sufficiently gentle, it has a
negligible effect on the shape of even a flexible polymer.
A fractal can generate such flows to produce hydrody-
namic drag when an external force like gravity is exerted
on the fractal. More importantly, the fractal perturbs
an imposed flow, thus increasing the dissipation and in-
creasing the effective viscosity of the fluid. The cases
considered above lead us suspect that fractals are espe-
cially effective at modifying flow. We shall see below that
this is true.

We imagine a fractal held stationary as the surround-
ing fluid gently flows upward at a speed v0. The fractal
influences the fluid, because at any point on the (fixed)
fractal the adjacent flow velocity must be zero. At some
given distance r from the fractal’s home particle there is
some average velocity v(r). In general, the velocity at
r need not be upward as the flow at large distances is.
But for our qualitative purposes it is sufficient to consider
only the vertical part of the velocity. The velocity field
around the fractal is controlled by the laws of hydrody-
namics; these express the balance of forces and accelera-
tions on each fluid element. But in the present situation,
the meaning of the hydrodynamic laws can be summa-
rized in a phrase: momentum moves through the fluid
by diffusion. The fluid infinitely far from a fractal has
a given fixed momentum per unit volume, proportional
to its speed v0. Each fractal particle absorbs all the mo-
mentum density adjacent to it, so that the fluid next to
it is motionless. In steady flow, each particle absorbs mo-
mentum at some constant rate, and thus experiences a
steady force. Momentum absorbed from the fractal parti-
cles is replaced by diffusion of momentum from the fluid
outside. Thus the velocity field plays exactly the role
played by the diffusing field u treated above. We may
view the vertical momentum as being carried by a tangle
of random walkers, as with any other diffusing substance
(Roux 1987).

Any fractal that is transparent to a diffusing substance
is also transparent to flow. Though the fluid is stationary
near each particle of the fractal, still v(r) ' v0 through-
out most of the fractal volume. The fluid passes right
through the fractal. On the other hand, any fractal that
is opaque to a diffusing substance is also opaque to a flow.
The speed v(r) throughout the interior is substantially
reduced relative to the distant speed v0. Since the fluid
cannot flow through the fractal, it mostly flows around it.
The force on our fractal due to the flow can be expressed
in terms of an equivalent hard sphere—which would feel
the same force. The radius of this equivalent sphere is

8The actual rate is proportional to the sphere’s radius, the distant concentration and the diffusion constant of the diffusing
substance.
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called the “hydrodynamic radius” Rh of the object. Since
the fractal is opaque to flow, this Rh is comparable to the
geometric radius R, as seen above for the thermodynamic
radius Rt. This means that the fractal absorbs momen-
tum at a rate comparable to that of a solid sphere with
the same size as the fractal9. The force on the fractal
is thus similar to the force on the sphere. Any object
moved through a fluid exerts a force depending on its
size. By reducing the radius of our solid sphere by a fi-
nite factor, we can achieve the same force that the fractal
exerts. The radius of this equivalent sphere is defined as
the hydrodynamic radius Rh. Evidently, if the object is a
large fractal, the hydrodynamic radius is a fixed fraction
of its geometric radius R.

Hydrodynamic drag on an object also controls the
Brownian motion of that object in the solution. Brow-
nian motion is caused by random thermal forces in the
surrounding solvent. These forces, like imposed forces,
produce a proportionate velocity v0, given by the hydro-
dynamic drag ratio (F/v0) characteristic of the object
and solvent. Knowing the velocity resulting from the ran-
dom thermal forces allows one to calculate the diffusion
constant ζ. This ζ gives the mean-squared distance

〈
x2
〉

covered in a given time t:
〈
x2
〉

= ζt. Einstein ( 1905)
discovered that the diffusion constant ζ of any object at
absolute temperature T is determined by its drag ratio10:
ζ = kT (v0/F ). Given the drag ratio of our fractals, this
means ζ = kT/(6πηRh). Thus opaque fractals diffuse in
a solution at about the same rate as solid spheres of the
same overall size.

This opacity holds for other flow conditions, notably
shear flow. In a shear flow, like that in a pipe or a glass of
swirling water, the velocity ~v(r) near the wall runs paral-
lel to it and is proportional to the distance from it. In a
shear flow a small cubical region of the fluid distorts into
a rhomboidal box as shown in Figure 5. The fractional
movement of the top of the box relative to the bottom is
called the shear γ ; this shear increases at a constant rate
in time; the shear rate is called γ̇. From the point of view
of a fractal moving with the fluid, there is right-moving
fluid above it and left-moving fluid below it. The fractal
particles disturb this flow much as they did the uniform
fluid treated above. And again the disturbance is sub-
stantial. The flow within an opaque fractal is reduced by
a finite factor regardless of how large (and tenuous) the
fractal becomes. And as with uniform flow, the change in

the velocity far outside the fractal is comparable to that
of a solid sphere whose radius is a fixed fraction of R.

b

a

FIG. 5. Two types of flow: a) elongational flow; b) shear
flow. The elongational flow shown amounts to a vertical
stretching of the upper left picture, as indicated by the
arrows. Shear distortion, indicated by opposed arrows
at center, can also be effected by a diagonal stretching
(lower-left picture) followed by a rotation, to obtain the
lower-right picture.

One consequence of the disturbed flow is an increased
dissipation of the fluid’s kinetic energy as heat. The
power dissipated per unit volume in a small region is
equal to the viscosity η times the square11 of the shear
rate, γ̇2. A solid sphere in a fluid has none of this dissi-
pation within the sphere. But there is extra dissipation
outside it: the fluid must flow faster in order to pass
around the sphere. The overall effect is to increase the
dissipation moderately in a volume comparable to the
sphere volume (Happel et al. 1973). The extra power P
is 2.5 times that which would have occurred in the sphere
volume V if the sphere had been absent: P = 2.5ηγ̇2V .

An opaque fractal produces dissipation much like a
solid sphere of the same size. It cannot dissipate more,
since no solid object confined within a spherical volume

9The actual force F is proportional to the sphere radius Rh, the distant speed v0 and the viscosity η of the fluid. Specifically
F = 6πηv0Rh.

10The Boltzmann constant k is a conversion factor from conventional temperature units to energy units. At room temperature,
kT is roughly 1/40 of an electron volt—a hundred times smaller than the energy needed to break a polymer chain.

11The work done per unit time on a cubical volume element of side L like that of Figure 5b is the (lateral) force on the top (or
bottom) of the element, times the speed of the top face relative to the bottom face. In a viscous fluid this force is the product
of the viscosity η, the shear rate γ̇ and the area L2. The speed is the shear rate γ̇ times the height L. Combining, the power
P dissipated in the cube is proportional to its volume L3: ηγ̇2L3.
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can produce more dissipation than a sphere filling the
volume. It cannot dissipate much less since the exterior
flow and dissipation are like that of a solid sphere. By
shrinking our solid sphere by some moderate factor, we
may find a radius Rv such that the sphere and the fractal
have the same dissipation. This Rv is called the “visco-
metric” radius. Regardless of how large and tenuous an
opaque fractal becomes, Rv/R remains a fixed number,
as with Rt/R and Rh/R above. We shall return to dis-
cuss the value of this fraction and other related ones.

Figure 5a depicts an elongational flow, in which a small
cube is elongated into a rectangular box. The effect of a
fractal on a weak elongational flow is the same as in shear
flow. Indeed, a shear flow is equivalent to an elongational
flow, as the figure shows. Thus each fractal produces dis-
sipation like a solid sphere with the same radius Rv in
elongational or in shear flow.

Since fractals increase dissipation, they increase the ef-
fective viscosity of the fluid: more external work—more
force or pressure—is required to maintain a given flow
when the fractals are added to the liquid. The macro-
scopic viscosity η is that required to account for the power
dissipated in a volume Ω. This power P is ηγ̇2Ω. On
the other hand, this power can be expressed in terms of
the power P0 without the fractals and the extra power
dissipated by the N fractals added. If the viscosity of
the pure solvent is ηs, then P0 = ηsγ̇

2Ω. Each fractal
causes a dissipation ηsγ̇

2(2.5Vv), where Vv = 4
3πR

3
v is

the volume of the equivalent sphere. Adding the dissi-
pation from the N fractals in the solution volume Ω we
have P = ηsγ̇

2Ω[1 + 2.5Vv(N/Ω)]. Here we imagine a
solution dilute enough that the flows around the fractals
don’t interfere with one another. We recognize the N/Ω
as the concentration of fractals cp. The macroscopic vis-
cosity is increased by the same factor as the power P :
η = ηs[1 + 2.5Vvcp].

This increase in viscosity is quite similar to the increase
in osmotic pressure Π discussed in the previous section:
Π = kTcp[1 + 1

2Vtcp]. Both osmotic pressure and vis-
cosity are increased in proportion to the concentration
of fractals. For both quantities the amount of increase
per fractal is expressed as a volume, Vt or Vv. And for
opaque fractals both of these volumes are of the order of
the pervaded volume 4

3πR
3.

A small amount of fractal material increases the vis-
cosity noticeably just as it increases osmotic pressure no-
ticeably. The same concentration c∗p that doubles the os-
motic pressure is roughly the concentration that doubles
the viscosity. As we noted above, this is the “overlap con-
centration” at which the distance between fractals c−1/3

p

is comparable to their size R, and the overall volume
fraction φ in the solution is comparable to the (small)
internal volume fraction φi within a fractal. Fractals,
including polymers, are potent viscosifiers. Many thick
fluids in everyday life such as motor oil, or bottled sauces
owe their thick consistency to a small proportion of poly-
mers.

In this section we have seen how fractals can modify
flow and diffusion in a liquid. In our discussion we have
idealized the fractals. We have treated them as com-
pletely rigid objects of a fixed size R. Polymers, though
they are fractals, are not rigid and do not have the same
size. Each polymer, as it moves through a liquid by Brow-
nian motion, changes its size and shape continually. It is
only its average size and shape that stay fixed. Still the
laws of flow and diffusion discussed above are applicable.
One must simply replace the size R by an appropriate
average size, such as the average distance between two
arbitrary monomers. Another effect of a polymer’s flexi-
bility is that the polymer can be readily distorted by flow.
In order to have the properties described above the fluids
must flow gently enough that this type of distortion can
be neglected.

We have seen that polymers, like all opaque fractals,
have a number of characteristic effects on a fluid. They
produce osmotic pressure and viscosity in the fluid, and
they individually experience hydrodynamic drag. Each
of these effects can be quantified by a length. For the
osmotic pressure this was the thermodynamic radius Rt,
the radius of a sphere with the same excluded volume
as the polymer. For the viscosity it was the viscometric
radius Rv. For the drag coefficient it was the hydrody-
namic radius Rh. All these radii have roughly the same
size, and like the geometric size R they grow with the
molecular weight M as M1/D, where D is the fractal di-
mension. In the next section, we shall encounter effects
that alter the fractal dimension of a polymer from the
random-walk dimension of 2. But since our conclusions
apply to arbitrary opaque fractals, they apply also to
these altered polymers.

V. HOW SELF-INTERACTION CHANGES THE
FRACTAL DIMENSION

The conceptual random-walk polymers we’ve consid-
ered up to now are different from real polymers in an
important way. A random-walk polymer typically inter-
sects itself many times, while real polymers cannot inter-
sect themselves. A real polymer is “self-avoiding”: two of
its atoms cannot be in the same place at the same time!
Thus instead of treating polymers as random walks, it
would seem more realistic to treat them as self-avoiding
random walks. The subtleties of self avoidance can lead
to large changes in a polymer’s size and hence viscosity
with a few-degree shift in the temperature, as explained
below. The differences between random walks and self-
avoiding random walks also form an important subject in
mathematical polymer physics. Our goal here is to give
some account and some feeling for these differences.

If we consider all the possible bond angles of a polymer,
we will generate a large set of configurations. Many of
these configurations have monomers that intersect each
other, and are hence unrealistic. One way to arrive at
the proper set of realistic configurations is to start with
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the full set of random-walk polymers and then discard
the self-intersecting ones. (This is the same discarding
process we used above in our discussion of interactions
between fractals.) The fraction of the original configu-
rations remaining is the probability that the polymer is
self-avoiding. We wish to know how much the remaining
self-avoiding polymers differ in their properties from the
full set of random-walk polymers.

We may begin with the full set of random-walk con-
figurations and then start examining them for self in-
tersections. For convenience we imagine that our poly-
mer contains a number of monomers n that is an integer
power of two: n = 2K . We group the n monomers of
the chain into n/2 pairs. We group each two adjacent
pairs into a quartet, thus forming n/4 quartets. Then
we group each two adjacent quartets into an octet, to
form n/8 octets. We continue in this way (K times)
until we’ve made one final pairing containing the first
half and the last half of the monomers. Now we discard
self-intersecting configurations in stages. First we dis-
card those in which a monomer intersects with its paired
monomer. Non-intersecting pairs are somewhat larger
on the average than unrestricted pairs. But since inter-
sections are still freely allowed for other monomers, the
overall structure of our chain is still a random walk. It
is merely expanded by some factor because all the ele-
mentary pairs within it have been expanded by the same
factor as a dimer. We call this factor α1. Next we dis-
card configurations in which a dimer intersects with its
paired dimer. Figure 6 shows the result for two dimers
making a quartet. The effect on an isolated quartet is to
expand it by some modest factor α2. The overall chain
is expanded by the same factor, leading to a cumulative
expansion from both stages of α1α2. After many such
stages, we must consider chain-sections with m mono-
mers. Each half of the section already avoids itself, but
the two halves do not avoid each other. We now dis-
card all configurations in which the first half intersects
the last half. We have seen above that the probability
of intersection is substantial if the two halves are fractals
with D > 3/2. Configurations with a smaller size will be
more likely to intersect than those of a larger size. Thus
when the intersecting ones are discarded, the remaining
ones have a larger average size. The expansion factor αk
at the k-th stage is finite and limited even for arbitrar-
ily large segments. i.e., it is insensitive to the stage k.
Accordingly, we replace it by α with no subscript.

FIG. 6. A two-dimer chain with no avoidance between
the two dimers (left) and with avoidance (right). Some
possible positions of the right half are sketched. The
average end-to-end distance is a factor α2 larger in the
self-avoiding case.

After all the intersections from the various stages above
have been discarded, we have a completely self-avoiding
chain. On the other hand, each stage has expanded the
overall size by a factor α. This expansion factor is (ex-
cept perhaps for the earliest stages) independent of the
stage k. Thus the overall expansion factor is αK , where
K is the total number of stages. We conclude that the
final size R is related to the original random-walk size
R0 by R = R0α

K . Using R0 = (constant)n1/2 and
K = log n/ log 2, we have R = (constant)n1/2+logα/ log 2.
Since a fractal obeys R = constant n1/D, our self-
avoiding chain acts like a fractal of dimension D =
1/(1/2 + logα/ log 2). This argument leads us to ex-
pect that self-avoidance maintains the fractal nature of a
polymer, but decreases its fractal dimension. These ar-
guments are borne out by more detailed work (Jannink
et al. 1992).

The fractal dimension D must not decrease too much.
If it became smaller than the dimension of mutual opac-
ity, D = 3/2, the consistency of our arguments would
break down. For then, when we imposed self avoidance
between the two halves of a segment, these two halves
would not be mutually opaque. Their probability of in-
tersection would be indefinitely small. Accordingly, the
fraction discarded would be small, and the discarding
process would have virtually no effect on the size of the
segment. The expansion factor α would approach 1. This
would be true for virtually all the stages k, so that the
above formula would lead to an unmodified D. D would
remain 2 as in a simple random-walk polymer. That is,
the assumption that D < 3/2 leads to the conclusion
that D = 2: a contradiction. We are thus forced to the
conclusion, first noted by Des Cloizeaux (Des Cloizeaux
1970), that 2 > D > 3/2. The actual properties of self-
avoiding polymers have been studied by detailed calcula-
tions, by computer simulations, and by measurements on
real polymer solutions. All these approaches confirm that
these polymers, like random-walk polymers, are fractals.
They have a D very close to 5/3—a value consistent with
Des Cloizeaux’s inequality.
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Since real polymers are fractals just as random-walk
polymers are, the properties we deduced for general frac-
tals apply to real polymers. Since D > 3/2, they are
opaque to one another. Thus they increase osmotic pres-
sure as though they were hard spheres of radius Rt com-
parable to their average geometric size R. Since real
polymers have D > 1, they are also opaque to diffus-
ing substances and to flow. They experience hydrody-
namic drag and enhance viscosity as though they were
solid spheres roughly as large as their geometric size R.
Large real polymers have hydrodynamic radii Rh and
viscosimetric radii Rv that is a fixed multiple of the geo-
metric size R. These multiples depend only on the frac-
tal structure, and not on the specific polymer: they are
the same for all sufficiently large polymers. Measure-
ments on a number of polymers and solvents have es-
tablished the “Graessley ratios”12 (Davidson et al. 1987)
Rt : Rh : Rv : R = 1.01 : 1 : 1.03 : 1.9.

A real polymer must always avoid itself in any solvent.
Yet a real polymer need not always behave as a self-
avoiding walk with D ' 5/3. This is because the basic
effect of self avoidance can be modified by other effects.
In some solvents the monomers feel an effective attrac-
tion for each other: they are more likely to be near each
other than if they were placed in the solution at random.
We must take account of this attraction as well as the self
avoidance when we consider the expansion of a polymer.
For example, in the tetramer of Figure 6, we saw that
throwing out the self-intersecting configurations makes
the average size expand. But because of the attraction,
monomers which are close together like the shaded ones
in Figure 6 should be given extra weight compared to
monomers that are far apart. This extra weight tends
to reduce the average size of the pair. It can happen
that the reduction in size caused by the attraction just
compensates for the increase in size caused by the self-
avoidance, so that the expansion factor α is 1. When
this happens for many stages k, the attraction completely
compensates for the repulsion and the fractal dimension
D remains 2 like a random-walk polymer. Naturally, this
compensation requires a very specific amount of attrac-
tion between the monomers. Thus even a small change
in temperature can destroy the compensation. A solvent
and temperature for which the compensation is perfect is
called a “theta solvent”. For example, for the polystyrene

pictured in Figure 1, the solvent cyclohexane near 35±1
degrees Centigrade is a well-known theta solvent (Jan-
nink et al. 1992). In practice, an increase of temperature
by only 10 degrees from the theta temperature can dou-
ble the volume of a long polymer and thus increase the
solution viscosity significantly. Solvents with attraction
weaker than this compensating amount are called “good
solvents.” All good solvents show some net self repul-
sion. Since the self repelling pieces are mutually opaque,
the probability of discarding becomes independent of the
repulsion strength. The expansion factors αk reach the
same value for large segments (large k) even when some
attraction is present. Thus for all “good solvents” the
large-scale behavior13 is that of a self-avoiding walk, with
D ' 5/3.

If this cyclohexane is cooler than 35 degrees, the at-
traction becomes stronger than the compensating value.
Polymers in such a solvent become progressively smaller
than the random-walk size: they have a D that is larger
than 2. Such polymers attract one another in solution as
well as attracting themselves. Thus it is difficult to iso-
late them and measure their D definitively. Such solvents
are called “poor solvents”.

VI. SOLUTIONS OF MANY POLYMERS

The properties of individual polymers are strongly de-
termined by their fractal structure, as we have seen
above. This is even more true as we increase the con-
centration of our polymer solution from the dilute limit
studied above. As we shall see, the fractal structure ac-
counts for the oozing, springy flow of substances like mu-
cus and silly putty. For simplicity in what follows we
shall consider only good solvents, containing polymers
with D = 5/3. As the number of polymers per unit vol-
ume cp increases, so does the osmotic pressure Π. As we
have seen, Π/(kTcp) ' 1 + 1

2Vtcp. We saw that the con-
centration c∗p at which the second term becomes equal
to the first is the concentration at which the pervaded
volumes of the different coils begin to overlap. It was
thus called the overlap concentration. The associated
volume fraction φ∗ is roughly the internal volume frac-
tion φi ' (R/a)−4/3 within a coil. The work done to

12The geometric measure R used here is the radius of a solid sphere that would have the same root-mean-square distance
between arbitrary monomers that the polymer has. The values reported are for high-molecular-weight polystyrene in benzene.
Reported values for other polymers in good solvents differ from these by several percent; this variation is consistent with
experimental error. Several of these lengths are equal within experimental error, but there is no theoretical reason to believe
they are exactly equal.

13Naturally, chains in solvents close to the theta state must become very long in order to attain the asymptotic self-avoiding
behavior. The chain size required for self-avoidance to become significant is called the “thermal blob” length ξt (Daoud et al.
1976). Chains smaller than a thermal blob size are approximately random-walk chains. Even chains much larger than this size
behave as simple random walk fractals with D = 2 on length scales r <∼ ξt. This ξt goes to infinity as theta-solvent conditions
are approached.
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compress a solution to φ∗ is roughly the osmotic pres-
sure times the volume Ω. Thus a sizeable fraction of
this work is due to the interactions between polymers.
This work is called the free energy. Since Π ' kT c∗p,
the free energy is roughly a thermal energy kT for each
chain. For typical polymers, with a molecular weight of
105, this characteristic pressure is of the order of 10−3

atmosphere.
The overlap concentration c∗p is an important divid-

ing line in polymer solutions. Solutions much less con-
centrated than c∗p, are effectively dilute and interactions
between the polymers are unimportant. Solutions much
more concentrated than c∗p have strong interactions be-
tween the polymers. They are strong enough to distort
the polymer coils substantially and to bring about coop-
erative motions of many chains.

As the volume fraction increases above φ∗, the chains
interpenetrate. Concentrations much larger than φ∗ but
still much smaller than unity are called “semidilute.” A
chain in the semidilute regime interacts strongly with
many other chains. Accordingly, its structure is much al-
tered from the self-avoiding walk structure of a dilute
chain. To understand this structure, it is convenient
to build the semidilute solution by joining chains orig-
inally at the overlap concentration φ∗. These primary
chains have an internal volume fraction φi roughly equal
to the overall volume fraction φ of the solution. This
means they have a particular size ξ satisfying φ ' φi '
(ξ/a)−4/3. We choose an initial ξ-chain at random and
then connect one of its ends to the nearest available end
from another chain. Since the initial chains were at φ∗,
the two ends to be joined are no farther apart than about
a chain-size R. Thus the joining does not distort the two
chains very much. After doubling all the chains in this
way, we repeat the process so that each chain is quadru-
pled in length. With sufficient repetitions we may in-
crease the chain length as much as desired, while keeping
the volume per chain constant. This joining process thus
takes us further and further above φ∗.

These chains interpenetrate strongly, with many chains
occupying the pervaded volume of each. All these chains
must avoid each other and not intersect. But unlike di-
lute chains, these interpenetrating chains gain nothing
by expanding into a self-avoiding-walk structure. To see
this, we consider doubling one of the chains by joining two
nearby ends together. The two pieces joined have no spe-
cial alignment with each other; their end-to-end vectors
are unrelated to each other—they must each avoid many
other chains as well as avoiding each other. Thus when
the two are joined, the two halves remain uncorrelated,
as in a random walk discussed in the first section. The
mean-squared end-to-end distance is just double that of
each half. This argument holds for all subsequent dou-
blings, as well. Thus the long, interpenetrating chains
are like simple random walks, with D = 2. This con-
trasts with the situation in a pure solvent. There, if
two chains are joined, the two halves tend to be aligned,
and the mean-squared end-to-end distance is significantly

more than doubled, in accordance with self-avoiding walk
behavior.

Though our interpenetrating chains have the overall
structure of a simple random walk, the original ξ-chains
that were joined to create the final chains have their orig-
inal self-avoiding structure. Semidilute chains thus obey
two different fractal laws. The amount of chain n(r) en-
closed in a radius r grows as r5/3 if a ¿ ξ. But for
ξ ¿ r ¿ R, n(r) grows as r2. The ξ-chains are of-
ten called “blobs” (Daoud et al. 1975). The density of
monomers around a given monomer is shown in Figure 7
. The chains of a semidilute solution each come in con-
tact with arbitrarily many others. The various chains are
strongly entangled with one another. The result resem-
bles a network of random strands.

log(r)

log(φ(r)) -4/3

-1
-.8

φ

ξa

1

FIG. 7. Local volume fractions of monomer φ(r) at dis-
tance r from an arbitrary monomer in a semidilute solu-
tion of very low concentration φ. Solid curve, monomers
from the chain going through the origin. Dashed curve,
volume fraction of other chains. Scales are logarithmic,
so that power laws appear as straight lines. Within a
blob size ξ the total volume fraction is dominated by the
chain passing through the origin. Beyond the distance ξ
the total volume fraction is dominated by other chains.

From the joining construction above we can also under-
stand the osmotic pressure in a semidilute solution. As
noted above, the pressure is important because it counts
the amount of free energy stored in the solution. Be-
fore the joining process, we have seen that this energy
is about kT per chain. When the first two chains are
joined together, the distance to the surrounding chains
is not much changed. Thus the interaction energy with
these chains is about the same before and after joining.
This continues to be true as the joining process continues.
Thus after this process, the interaction energy remains
about kT per joined segment, as it was originally. That
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is, the interaction free energy and osmotic pressure are of
order kT per blob14. Expressed in terms of the volume
fraction φ, we may write Π ' kT/ξ3 ' (kT/a3)φ3/(3−D).
This prediction that Π ∼ φ9/4 and is independent of
chainlength is well verified experimentally, as shown in
Figure 8. We may readily remove all the solvent from
our solution and increase the volume fraction to unity.
Sometimes removing the solvent causes crystallization of
the polymers, or it immobilizes them in a glassy struc-
ture. But at high enough temperature the chains in this
solvent-free state remain in the liquid state called the
melt. In this melt state the blob size has been reduced
to a monomer size a. The density at all distances from a
given monomer is as uniform and constant as in a small-
molecule liquid. The chains are then simple random
walks at all length scales much larger than a monomer.
The osmotic pressure in this state is difficult to define,
since all the solvent has been removed. It is progressively
more difficult to remove the last traces of solvent; in this
sense the osmotic pressure becomes large on the scale of
kT per monomer.
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1
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FIG. 8. Osmotic compressibility vs. volume fraction for
various polymers and solvents. Osmotic compressibility
means change of osmotic pressure with volume fraction.
Horizontal scale is volume fraction φ, relative to φ∗. Ver-
tical scale is osmotic compressibility relative to its value
in the dilute limit. The scales are logarithmic. Points
are combined data on three samples of poly α-methyl
styrene in toluene, differing by a factor of five in molecu-
lar weight(Noda et al. 1981), and one sample of polyiso-
prene (natural rubber) in cyclohexane(Adam 1988). The
superposition of this data suggests that all long polymers
in good solvents have the same osmotic-pressure behav-
ior. The line indicates the expected φ5/4 behavior in the
semidilute regime.

VII. DYNAMIC RELAXATION IN POLYMER
SOLUTIONS

The most important and obvious property of a poly-
mer solution is the way it flows. A polymer solution flows
in a springy, syrupy way quite different from the flow of a
simple liquid like water or gasoline. To understand these
distinctive flow properties, we must understand how the
polymers move through the liquid.

In a quiescent dilute solution a polymer, like any other
molecule, moves via diffusion: the motion is a random
walk, whose mean squared distance

〈
x2
〉

covered is the
diffusion constant ζ times the elapsed time t, as noted
in Section IV. The various chains are far apart and thus
they do their random motions independently. As the
concentration approaches φ∗, this ceases to be true. The
random currents moving one polymer are also felt by its
neighbors, so that nearby chains have similar motions.
To characterize the motion we must specify two diffu-
sion coefficients: the self-diffusion coefficient and the co-
operative diffusion coefficient. The self diffusion coeffi-
cient ζs is defined by the motion of an individual chain.
ζs ≡

〈
x2
〉
/t, as introduced above. Neighboring chains

impede the random currents near a given chain; thus
ζs decreases as the concentration increases. The other
important aspect of diffusion is the spreading of extra
local concentration in the solution. The extra material
spreads over a distance x whose square is proportional to
time. The “cooperative diffusion coefficient” ζc gives the
constant of proportionality: ζc = x2/t. A small region
of extra concentration is under extra osmotic pressure.
This extra pressure, due to the repulsive interaction be-
tween the polymers, tends to spread the chains in the con-
centrated region apart faster than they would otherwise

14In this argument we ignored the interactions between the segments being joined. It is correct to ignore these, because
the osmotic pressure and the work to compress the solution to the given concentration φ are both expressed relative to the
dilute state. In the dilute state the final chains have already been joined together. Thus it does not contribute to the work of
compression and should not be counted.
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spread. Thus the interactions increase ζc. And thus as
the concentration increases from zero, ζc increases from
its limiting value of ζ, just as ζs decreases.

At semidilute concentrations, these two diffusion con-
stants become qualitatively different. If the chains in a
semidilute solution are more concentrated in a given re-
gion, the extra concentration can spread by having the
solvent move into the region through the entangled net-
work of polymers. This flow is impeded by the polymers
just as it is near an isolated polymer. The flow must go
around the chains rather than going uniformly through
them, as we saw above. This impeded flow depends on
how the monomers collectively produce drag. This drag
is about the same in the semidilute solution or in a sim-
ilar one obtained by cutting the blobs apart from one
another. But with the blobs cut apart in this way, the
solution is now at the overlap concentration φ∗. Here
we can readily estimate the cooperative diffusion coeffi-
cient. It is not greatly different from the dilute diffusion
constant of an isolated blob. We saw in Section IV that
this diffusion constant is inversely proportional to the ra-
dius ξ: ζblob = kT/(6πηsξ). We have deduced in the last
section that the blob size ξ decreases as the concentra-
tion increases: ξ ' aφ−3/4. Combining, we infer that
ζc ' kT/(ηsa)φ3/4. The cooperative diffusion becomes
faster as the concentration increases. But joining the
chains to make them longer has no effect on the cooper-
ative diffusion.

To deduce the self-diffusion coefficient ζs we must ask
how a given polymer coil moves in the semidilute envi-
ronment. Its motion is strongly impeded because it is
entangled with many other chains. To understand the
diffusion, we must understand the disentanglement pro-
cess. There is one way for a chain to move that does not
require the motion of other chains. It may simply move
along its own contour as a worm does. This “reptation”
motion arises from the independent Brownian motions of
the different blobs composing it. It is simplest to visual-
ize this motion of a chain along its contour by imagining
that the sequence of K blobs making up the chain lie in
a straight line. Each blob is subjected to independent
random forces. Considering the combined effect of all of
these, there is some net tendency at a given moment for
the chain to move to the left or to the right. It is sim-
plest to consider the motion of the center of mass, since
this center can only depend on the external forces on the
chain. The total external force is the sum of K inde-
pendent random forces, one for each blob. The external
forces are the same whether the blobs are connected or
not. If they are not, then each blob diffuses indepen-
dently with diffusion constant ζblob. The center-of-mass
has position x =

∑
k xk/K. The mean-squared center-

of-mass position
〈
x2
〉

is the average of those of its blobs:〈
x2
〉

=
〈
x2
k

〉
/K. Thus the diffusion constant of the cen-

ter of mass is reduced from that of a blob by a factor of
the number of blobs in a chain K. Now we may read-
ily account for the effect of connecting the blobs. The

connections generate internal forces amongst the blobs.
But such forces don’t affect the center-of-mass motion.
Thus they don’t affect the diffusion constant. The self
diffusion along its contour is K times smaller than that
of a disconnected blob.

From this contour diffusion constant, we may deduce
the time for a chain to diffuse its own contour length
ξK. This time is called the “reptation time” τrep. We
may express it as τrep ' (ξK)2K/ζblob. This τrep is evi-
dently proportional to the cube of the chainlength; it can
easily reach tens of seconds, even without especially large
molecular weights. From this τrep we can deduce the self-
diffusion constant. In the time τrep the chain moves its
own size R '

√
Kξ as it moves its own length along the

contour. The self-diffusion constant can thus be written
ζs ' R2/τrep ' ζblob/K

2. It is much smaller than the
cooperative diffusion constant ζc, which is roughly the
size of ζblob. It is also much smaller than the diffusion
constant ζ in the dilute state where the chain has size
R0: ζ = ζblob(ξ/R0).

With these dynamical responses in mind, we can ac-
count for the most important type of relaxation in a
polymer solution: the relaxation of mechanical stress.
This stress arises, e.g. , when the solution is stretched
along some axis as it would be if poured from a vessel.
When this stretching is done more rapidly than τrep, the
polymer chains cannot disentangle during the stretching.
Each chain is obliged to elongate with the sample as a
whole, and thus becomes distorted. With each successive
blob, a given chain encounters other chains that constrain
it. Thus if the sample is stretched by a factor of two, each
blob is obliged to elongate by roughly a factor of two as
well. The force exerted to cause the stretching supplies
the energy to distort these blobs. The work required to
pull the ends of any free polymer a distance compara-
ble to the chain size is of the order of the thermal energy
kT . Since each blob is elongated to this degree, each blob
stores about kT of energy under a unit elongation. If our
solution is rapidly released from this stretched position,
the restoring forces on the chains bring them back to their
undistorted shape; the sample springs back elastically to
its original shape, like a solid. This is the origin of the
elasticity of rubber. It is also the cause of the springy be-
havior of a raw egg white, of viscous fluids in our body,
and of many other liquids in daily life.

Now if the sample is not released but is held in its
stretched position, the chains move by the same repta-
tion responsible for self diffusion. As they move, they
are able to disengage from each other. The entangle-
ments that initially constrained the chains unravel and
the chains become undistorted again. The time required
for this is the time for a chain to reptate out of its initial
constraints: i.e., the reptation time τrep. Thus the initial
applied force relaxes on this time scale. Now if the sam-
ple is released, there is no restoring force and it keeps its
distorted shape. Over this time scale it has flowed like a
liquid rather than springing back like an elastic solid.
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VIII. CONCLUSION

In their atomic makeup the polymer solutions we have
considered differ very little from a simple liquid like wa-
ter. Water consists of a mass of small molecules that may
move about freely, subject to the lenient constraints of
the liquid state. In a polymer solution almost all of this
freedom remains. Only a small fraction of the atoms are
linked in sequence so that their mutual separations are
fixed. These sequences are the flexible polymer chains.
We have seen that even a small fraction of these chains
changes the macroscopic properties of the liquid dramat-
ically. It creates large spatial structures which are very
effective at modifying flow, transmitting stress and in-
creasing viscosity. In addition these structures store me-
chanical energy in a convenient form over macroscopic
times.

The polymer phenomena sketched here now constitute
a mature field of science. Most of the phenomena are well
documented experimentally and are understood theoret-
ically. They reveal a type of matter that is distinctive,
controllable, and understandable from a few basic princi-
ples. This understanding now forms the basis for a wealth
of new phenomena involving polymers. Polymer chains
in new architectures such as branches, combs, and loops
change the nature of entanglement and disentanglement.
Polymers in confined geometries—adsorbed or grafted to
surfaces, in thin wetting layers, or in adhesive layers—
produce new types of flow and interaction with bulk fluid.
Heterogeneous polymers with mutually immiscible parts
phase separate on a molecular scale, forming controllable,
periodic patterns. The elements of fractal structure, in-
terpenetration, and deformability that make simple poly-
mers interesting and useful promise also to create further
surprising behavior in these new situations.
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IX. KEY TO SYMBOLS (IN ORDER OF
APPEARANCE)

n Number of elementary segments in a polymer.

〈...〉 Means average over some fluctuating quantity:

a Length of a step in a random-walk polymer.

R Radius of imaginary sphere used in defining fractal
properties. Radius of the truncated fractal objects
defined in the text.

n(R) Average number of chain segments within dis-
tance R of an arbitrary segment.

φ Volume fraction: the fraction of the fluid’s volume
occupied by polymers or other solutes.

D Fractal dimension from the formula for the distri-
bution of matter in a fractal object: n(R) ∝ RD

g(r) Pair distribution function describing the number
of particles at a displacement r from a given parti-
cle.

Ω Volume of the solution being studied.

N Number of solute objects in the solution being stud-
ied.

Vt Thermodynamic volume or excluded volume: the
volume rendered inaccessible to the solute objects
in a solution by the addition of one further solute
object.

Rt Thermodynamic radius: radius of a sphere whose
volume is Vt.

cp Number concentration of solute: N/Ω.

Π Osmotic pressure in a solution.

kT Boltzman constant times temperature.

c∗p Overlap concentration, at which the osmotic pres-
sure rises to twice its ideal-solution value.

η Viscosity of a solution.

Rh Hydrodynamic radius: radius of a sphere with the
same drag coefficient as a given solute object.

ζ Diffusion constant.

γ Shear strain or shear.

γ̇ Shear rate: rate if increase of shear per unit time.

Rv Viscometric radius: radius of here that increases
the fluid visosity the same amount as given solute
object does.

ξt Size of a segment of a polymer above which self-
avoidance effects become important.

φ∗ Overlap volume fraction: Volume fraction of a so-
lution whose solute particles are at a concentration
c∗p.

ξ Blob size: geometric size of polymers that would be
at their overlap concentration in a solution of given
volume fraction.

φ(r) Local volume fraction at a distance r from an
arbitrary monomer.

ζs Self-diffusion constant defined from measurements
of a single object’s displacement over time.
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ζc Co-operative diffusion constant defined from mea-
surements of the density of solute objects over time.

τrep Reptation time: time for a polymer to move a
distance equal to its radius through the tangle of
other polymers constraining it.
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