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ABSTRACT

We infer scaling of the shape and energy of a space-enclosing elas-
tic sheet such as a large fullerene ball of linear dimension R. Stretching
deformation is crucial in determining the optimal shape, in conjunc-
tion with bending. The asymptotic shape of a symmetrical fullerene
ball is a flat-sided polyhedron whose edges have an average curvature
radius of order R2/3. The predicted asymptotic energy is concentrated
in these edges and is of order R1/3. Analogous edges with this scaling
property should occur generally in elastic sheets with discrete discli-
nations.

PACS-92: 68.60-Bs, 36.20 -r, 03.40.Dz

Since the discovery of the spherical C60 molecule [1], there is mounting ev-
idence [2,3] for high-molecular-weight “fullerenes”—analogs of C60 in which the
carbon atoms form a closed, ball-shaped surface. The properties and potential
uses of such molecules have aroused great recent interest [2]. In addition, such
a surface constitutes a “tethered membrane”; the fluctuations and mechanics of
such membranes are of great interest in the statistical physics of complex fluids
[4].

When fullerene molecules are sufficiently large, one expects their defor-
mation to be describable using a continuum approach [5], as well as by an
atom-by-atom treatment [5,6]. For example, one expects the most symmetrical
form of the molecule to be an extended graphite surface, punctuated with twelve
five-membered rings so as to form a regular icosahedron with a five-carbon ring
at each vertex [2]. Although the network of bonds is that of a flat-sided icosahe-
dron, the shape of the molecule need not be. Instead, the shape relaxes so as to
minimize the bond-distortion energy inherent in the structure. Any departure
from a flat graphite plane costs distortion energy. To reduce this energy, the
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sharp edges of the icosahedron are expected to soften so that the minimum-
energy surface is smooth except near the five-carbon rings. Nearly all of this
energy is expected to reside where the bond distortion is weak, i.e., far from
the five-membered rings [7]. Thus the energy may be expressed [5,7] in terms
of the elastic constants of a weakly deformed graphite membrane.

By adopting such a treatment, we investigate the shape of this smooth
surface and its associated elastic energy. We find that the asymptotic shape
approaches that of an icosahedron, with nearly-flat faces joined by more strongly
curved edges. But the absolute curvature of these edges is weak; the typical
edge radius of curvature S increases indefinitely, as a fractional power of the
size R. Stretching and bending distortions are responsible for the deformation
energy. This energy resides mostly along the edges and should scale as the one-
third power of the radius R, as shown below. We first describe how a flat elastic
sheet must be distorted to form a closed surface such as a fullerene ball. We
recall the energies associated with bending and with stretching and show that
stretching must play a leading role in determining the asymptotic shape. Then
we construct an energy-balance argument to infer the scaling of the shape and
energy with size R. Finally we illustrate this scaling using macroscopic surfaces.

To account for the elastic energy, it is useful to picture the surface as
constructed from a continuous material such as paper. In order to form a
closed surface, twelve “disclinations” representing the five-fold rings must be
introduced. A single disclination may be formed by cutting a sixty-degree
sector from a circular sheet of paper and then joining the cut edges. The
resulting cone has a local radius of curvature S(r) proportional to the distance
from the vertex. The resulting bending energy B = K

∫
s
d2rS(r)−2 increases

logarithmically with the radius of the cone. Here K is the bending modulus
of the surface. Twelve such cones may readily fastened together to form an
icosahedron. If the sides of this icosahedron are forced to be flat, the bending
energy B resides exclusively at the edges. If these edges have a small radius of
curvature S independent of the size R, the total energy is evidently proportional
to the total length of the edges, and hence proportional to R.

By relaxing the curvature at the edges, the bending energy may be reduced.
However, such softening of the edges is not possible without stretching the
material. To see this we assume that the material cannot stretch but can only
bend. Then at any given point, curvature is allowed in only one direction; the
curvature in the perpendicular direction must be zero. The cones from which
our icosahedron was assembled have this property. When the cones are joined
together, softening of the edges implies that some of the curvature of the original
cones survives in the closed surface. But for points not on the edge, this requires
curvature in two independent directions. Such curvature cannot be achieved by
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pure bending; it requires stretching distortions within the surface. Thus if such
stretching is forbidden, only a sharp-edged icosahedron is allowed.

Intuitively, such stretching should be difficult relative to bending for a
large, thin surface. Indeed, one may easily verify this on dimensional grounds.
Any in-plane distortion such as stretching costs an elastic energy of the form
U ' G

∫
s
d2r(du/dr)2. Here u(r) is the position of some point on the surface s.

The du/dr represents the local strain tensor. (The exact tensor form and the
specific elastic constants defining U are not necessary for our argument.) The
associated moduli G have dimensions of energy per unit area. If we consider a
family of smoothly curved surfaces of identical shape (and strain) but differing
in overall size R, the energy U is evidently proportional to R2. However, the
bending energy B defined above is independent of R. Thus the energy cost of
any assumed softening of the edges becomes prohibitive as the size R is scaled
to infinity. We conclude that any curvature radius Se at the edges must become
arbitrarily small relative to the average curvature 1/R. Thus the bending energy
B ' R/Se, must become arbitrarily large relative to that of the cones, and must
thus grow faster than the O(log(R)) energy of the the individual cones.

Figure 1. Bending of a diamond-shaped surface. The edge length R,
the transverse radius of curvature Se at the midpoint, and the displace-
ment y of this midpoint from the ridge of a sharply creased surface
are shown.
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Though Se must be small relative to R, it may still increase in absolute
terms as R increases. To estimate this increase, one must examine the interplay
between bending and stretching in more detail. To find the shape via standard
methods requires the solution of two coupled, nonlinear partial differential equa-
tions for the shape of the surface and the strain field within it [8]. To extract
the scaling behavior of the curvature S−1

e from these equations is a subtle task,
and we know of no such treatment. However one may educe the scaling of Se

by a simple model. We modify the fullerene surface by fastening rigid bars from
the vertices to the center of each face, and forcing the three bars in each face to
be coplanar. (The addition of these bars distorts the surface and increases the
energy somewhat.) We then consider the diamond-shaped region between the
four bars surrounding a given edge. In an exact icosahedron the diamond would
be creased along its long diagonal at a 138-degree angle. The other two corners
lie at midpoints of the triangular faces. Each such diamond-shaped region may
relax from this creased shape in order to reduce the elastic energy, thus forming
a continuously curved surface. As argued above, we expect that the dominant
curvature lies along the edges of this surface.

One may estimate the elastic energies in terms of the typical Se. The
bending energy B is concentrated in the region within roughly Se of an edge.
Its length is of order R. Thus B ' KR/Se; the bending energy resists cur-
vature. But a reduced curvature entails increased stretching of the edge re-
gion. The curvature causes the midline of the bend to retract inward rela-
tive to the straight polyhedron edge by an amount y of order Se, as shown
in Figure 1. Thus the length of this midline is increased by a factor of
roughly (1 + (Se/R)2)1/2 ' 1 + O(Se/R)2. Accordingly, the edge region un-
dergoes a stretching strain du/dr of order (Se/R)2. The associated stretch-
ing energy U is of order GRSe(du/dr)2 ' GRSe(Se/R)4 [9]. Hence the ratio
U/B ' (G/K)S2

e (Se/R)4.

The surface chooses that shape and hence that Se which minimizes B +U .
Since B and U have power-law dependence on Se, the two are of comparable
size at the optimum Se ≡ S̃(R). Since U/B ∼ R0, we infer S̃(R) ∼ R2/3, so
that B ' U ∼ R1/3. This is the result announced above. The model gives an
upper bound on the strain energy U . We argue below that further relaxation
does not alter U qualitatively.

One may question whether a polyhedral elastic sheet would stretch along
its edges like the rigidly held diamond of Figure 1. Instead, one might imagine
that as the sheet is allowed to relax from the sharp-edged initial shape, the
corners would contract towards each other. Then the straight-line distance
between two corners would be reduced and the stretching of the softened edge
would be mitigated. But the cost of such a contraction would be greater than
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its benefit. If the three corners of a face approached each other by fractional
amount γ, this would produce a strain of order γ throughout much of the face.
The cost of relieving the stretching at the edges would be to create comparable
strain throughout the faces. Thus it seems plausible that the contraction of the
corners is not important, and that the diamond model is reasonable.

An alternative estimate of the strain energy can be made using the “topo-
logical electrostatics” representation of Nelson, valid for weakly deformed flat
surfaces [10]. For such surfaces, one may represent the strain energy U in the
form U = G

∫
d2rγ2. Here G is a particular combination of bulk and shear

moduli and γ(r) is a particular scalar combination of the strain tensor du/dr.
This γ can be expressed as a fictitious electrostatic potential generated by a
charge density equal to the gaussian curvature C̄: ∇2γ = C̄. (The Gaussian
curvature at a point is the inverse of the product of the two principal radii of
curvature.) In the diamond shape of Figure 1, the Gaussian curvature along
the edge is of order −(1/Se)(y/R2) ' 1/R2. This line of negative curvature is
flanked by two regions of compensating positive curvature. These regions are
at the boundary of the edge region. Interpreting these curvatures as charge
densities, one may readily determine the associated potential γ. The “electric
field” is equal to the linear charge density C̄Se. The charge separation is of
order Se. Thus the potential γ ' C̄S2

e . This strain field is present in the edge
region, whose area is of order RSe. Combining, we obtain U ' G(RSe)(Se/R)4,
in agreement with the previous estimate.

The progressive flattening of the faces predicted above is illustrated in
Figure 2. This photograph shows a triangle of an elastic sheet whose corners
have been bent into disclinations. Two triangles differing by a factor of five
in size were made from the same sheet of material. The progressive flattening
of the face with increasing size is evident from the reduced curvature of the
highlight nearest the viewer.

Our prediction may be compared with Tersoff’s recent energy calculation
for icosahedral fullerenes with 1–36 inequivalent carbon atoms [5]. These ener-
gies accurately follow a log(R) scaling, and they are much less consistent with
our predicted R1/3 scaling. Thus it seems that even larger molecules than these
are required in order to attain the asymptotic regime. Our prediction could
also be tested by an explicit calculation for a macroscopic sheet, but we know
of no such calculation.

It appears that shapes and energies of large fullerenes have scaling features
that had not been anticipated. More broadly, such scaling should describe an
arbitrary elastic sheet cut and fastened so as to enclose a region of space. We
expect crumpled elastic membranes with discrete disclinations to form edges
described by this scaling, as well. It would be valuable to corroborate our
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Figure 2. Macroscopic models of a face of a fullerene ball made from a
projection transparency sheet as described in the text. Paper copies of
the initial sheet and its final bent shape are shown to aid recognition.

scaling arguments with systematic calculations.
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