Aggregates resulting from our growth algorithm

Interactive supplement to the paper
"Geometrical frustration yields fiber formation in self-assembly"
by Martin Lenz and Thomas A. Witten
March, 2017

Legend

Each panel depicts one aggregate and contains a heading listing the asymmetry parameter \(k\) for irregular hexagons (or the polygon shape for other polygons), the rescaled surface tension \( \tilde{\sigma}\) and the growth procedure, as detailed in the text. Each column of panels differs only in \(\tilde{\sigma}\). The same list of \(\tilde{\sigma}\) values are used for all rows.

Orange colored polygons indicate seed regions present at the beginning of the growth process. Subsequently added polygons are shown in blue, with darkest blue for first added and lightest blue for last added. Orange lines indicate unjoined sides. The aggregates each have 150 added polygons. Images are scaled to the same size.

In cases where polygons overlap, the latest-added polygons appear in front, but orange lines for unjoined sides are shown for both exposed and hidden polygons. The 1st-7th row treat cases discussed in the main text, while the 8th-10th are discussed in the Supplementary text.

Instructions

Click on "zoomable" above each aggregate to display a vectorial (indefinitely zoomable) image, allowing a detailed inspection of it. Click on the aggregate itself to show a movie of its assembly.

Data

\(k = 2\)
\(\tilde\sigma = 1.0\) (zoomable)
1606_0000
\(k = 2\)
\(\tilde\sigma = 1.1\) (zoomable)
1606_0001
\(k = 2\)
\(\tilde\sigma = 1.2\) (zoomable)
1606_0002
\(k = 2\)
\(\tilde\sigma = 1.3\) (zoomable)
1606_0003
\(k = 2\)
\(\tilde\sigma = 1.4\) (zoomable)
1606_0004
\(k = 2\)
\(\tilde\sigma = 1.5\) (zoomable)
1606_0005
\(k = 2\)
\(\tilde\sigma = 1.6\) (zoomable)
1606_0006
\(k = 2\)
\(\tilde\sigma = 1.7\) (zoomable)
1606_0007
\(k = 2\)
\(\tilde\sigma = 1.8\) (zoomable)
1606_0008
\(k = 2\)
\(\tilde\sigma = 1.9\) (zoomable)
1606_0009
\(k = 2\)
\(\tilde\sigma = 2.0\) (zoomable)
1606_0010
\(k = 2\)
\(\tilde\sigma = 2.1\) (zoomable)
1606_0011
\(k = 2\)
\(\tilde\sigma = 2.2\) (zoomable)
1606_0012
\(k = 2\)
\(\tilde\sigma = 2.3\) (zoomable)
1606_0013
\(k = 2\)
\(\tilde\sigma = 2.4\) (zoomable)
1606_0014
\(k = 2\)
\(\tilde\sigma = 2.5\) (zoomable)
1606_0015
\(k = 2\)
\(\tilde\sigma = 2.6\) (zoomable)
1606_0016
\(k = 2\)
\(\tilde\sigma = 2.7\) (zoomable)
1606_0017
\(k = 2\)
\(\tilde\sigma = 2.8\) (zoomable)
1606_0018
\(k = 2\)
\(\tilde\sigma = 2.9\) (zoomable)
1606_0019
add & remove
\(\tilde\sigma = 1.0\) (zoomable)
1606_0020
add & remove
\(\tilde\sigma = 1.1\) (zoomable)
1606_0021
add & remove
\(\tilde\sigma = 1.2\) (zoomable)
1606_0022
add & remove
\(\tilde\sigma = 1.3\) (zoomable)
1606_0023
add & remove
\(\tilde\sigma = 1.4\) (zoomable)
1606_0024
add & remove
\(\tilde\sigma = 1.5\) (zoomable)
1606_0025
add & remove
\(\tilde\sigma = 1.6\) (zoomable)
1606_0026
add & remove
\(\tilde\sigma = 1.7\) (zoomable)
1606_0027
add & remove
\(\tilde\sigma = 1.8\) (zoomable)
1606_0028
add & remove
\(\tilde\sigma = 1.9\) (zoomable)
1606_0029
add & remove
\(\tilde\sigma = 2.0\) (zoomable)
1606_0030
add & remove
\(\tilde\sigma = 2.1\) (zoomable)
1606_0031
add & remove
\(\tilde\sigma = 2.2\) (zoomable)
1606_0032
add & remove
\(\tilde\sigma = 2.3\) (zoomable)
1606_0033
add & remove
\(\tilde\sigma = 2.4\) (zoomable)
1606_0034
add & remove
\(\tilde\sigma = 2.5\) (zoomable)
1606_0035
add & remove
\(\tilde\sigma = 2.6\) (zoomable)
1606_0036
add & remove
\(\tilde\sigma = 2.7\) (zoomable)
1606_0037
add & remove
\(\tilde\sigma = 2.8\) (zoomable)
1606_0038
add & remove
\(\tilde\sigma = 2.9\) (zoomable)
1606_0039
seeded
\(\tilde\sigma = 1.0\) (zoomable)
1606_0140
seeded
\(\tilde\sigma = 1.1\) (zoomable)
1606_0141
seeded
\(\tilde\sigma = 1.2\) (zoomable)
1606_0142
seeded
\(\tilde\sigma = 1.3\) (zoomable)
1606_0143
seeded
\(\tilde\sigma = 1.4\) (zoomable)
1606_0144
seeded
\(\tilde\sigma = 1.5\) (zoomable)
1606_0145
seeded
\(\tilde\sigma = 1.6\) (zoomable)
1606_0146
seeded
\(\tilde\sigma = 1.7\) (zoomable)
1606_0147
seeded
\(\tilde\sigma = 1.8\) (zoomable)
1606_0148
seeded
\(\tilde\sigma = 1.9\) (zoomable)
1606_0149
seeded
\(\tilde\sigma = 2.0\) (zoomable)
1606_0150
seeded
\(\tilde\sigma = 2.1\) (zoomable)
1606_0151
seeded
\(\tilde\sigma = 2.2\) (zoomable)
1606_0152
seeded
\(\tilde\sigma = 2.3\) (zoomable)
1606_0153
seeded
\(\tilde\sigma = 2.4\) (zoomable)
1606_0154
seeded
\(\tilde\sigma = 2.5\) (zoomable)
1606_0155
seeded
\(\tilde\sigma = 2.6\) (zoomable)
1606_0156
seeded
\(\tilde\sigma = 2.7\) (zoomable)
1606_0157
seeded
\(\tilde\sigma = 2.8\) (zoomable)
1606_0158
seeded
\(\tilde\sigma = 2.9\) (zoomable)
1606_0159
\(k = 1.01\)
\(\tilde\sigma = 1.0\) (zoomable)
1606_0160
\(k = 1.01\)
\(\tilde\sigma = 1.1\) (zoomable)
1606_0161
\(k = 1.01\)
\(\tilde\sigma = 1.2\) (zoomable)
1606_0162
\(k = 1.01\)
\(\tilde\sigma = 1.3\) (zoomable)
1606_0163
\(k = 1.01\)
\(\tilde\sigma = 1.4\) (zoomable)
1606_0164
\(k = 1.01\)
\(\tilde\sigma = 1.5\) (zoomable)
1606_0165
\(k = 1.01\)
\(\tilde\sigma = 1.6\) (zoomable)
1606_0166
\(k = 1.01\)
\(\tilde\sigma = 1.7\) (zoomable)
1606_0167
\(k = 1.01\)
\(\tilde\sigma = 1.8\) (zoomable)
1606_0168
\(k = 1.01\)
\(\tilde\sigma = 1.9\) (zoomable)
1606_0169
\(k = 1.01\)
\(\tilde\sigma = 2.0\) (zoomable)
1606_0170
\(k = 1.01\)
\(\tilde\sigma = 2.1\) (zoomable)
1606_0171
\(k = 1.01\)
\(\tilde\sigma = 2.2\) (zoomable)
1606_0172
\(k = 1.01\)
\(\tilde\sigma = 2.3\) (zoomable)
1606_0173
\(k = 1.01\)
\(\tilde\sigma = 2.4\) (zoomable)
1606_0174
\(k = 1.01\)
\(\tilde\sigma = 2.5\) (zoomable)
1606_0175
\(k = 1.01\)
\(\tilde\sigma = 2.6\) (zoomable)
1606_0176
\(k = 1.01\)
\(\tilde\sigma = 2.7\) (zoomable)
1606_0177
\(k = 1.01\)
\(\tilde\sigma = 2.8\) (zoomable)
1606_0178
\(k = 1.01\)
\(\tilde\sigma = 2.9\) (zoomable)
1606_0179
\(k = 4\)
\(\tilde\sigma = 1.0\) (zoomable)
1606_0080
\(k = 4\)
\(\tilde\sigma = 1.1\) (zoomable)
1606_0081
\(k = 4\)
\(\tilde\sigma = 1.2\) (zoomable)
1606_0082
\(k = 4\)
\(\tilde\sigma = 1.3\) (zoomable)
1606_0083
\(k = 4\)
\(\tilde\sigma = 1.4\) (zoomable)
1606_0084
\(k = 4\)
\(\tilde\sigma = 1.5\) (zoomable)
1606_0085
\(k = 4\)
\(\tilde\sigma = 1.6\) (zoomable)
1606_0086
\(k = 4\)
\(\tilde\sigma = 1.7\) (zoomable)
1606_0087
\(k = 4\)
\(\tilde\sigma = 1.8\) (zoomable)
1606_0088
\(k = 4\)
\(\tilde\sigma = 1.9\) (zoomable)
1606_0089
\(k = 4\)
\(\tilde\sigma = 2.0\) (zoomable)
1606_0090
\(k = 4\)
\(\tilde\sigma = 2.1\) (zoomable)
1606_0091
\(k = 4\)
\(\tilde\sigma = 2.2\) (zoomable)
1606_0092
\(k = 4\)
\(\tilde\sigma = 2.3\) (zoomable)
1606_0093
\(k = 4\)
\(\tilde\sigma = 2.4\) (zoomable)
1606_0094
\(k = 4\)
\(\tilde\sigma = 2.5\) (zoomable)
1606_0095
\(k = 4\)
\(\tilde\sigma = 2.6\) (zoomable)
1606_0096
\(k = 4\)
\(\tilde\sigma = 2.7\) (zoomable)
1606_0097
\(k = 4\)
\(\tilde\sigma = 2.8\) (zoomable)
1606_0098
\(k = 4\)
\(\tilde\sigma = 2.9\) (zoomable)
1606_0099
pentagons
\(\tilde\sigma = 1.0\) (zoomable)
1606_0100
pentagons
\(\tilde\sigma = 1.1\) (zoomable)
1606_0101
pentagons
\(\tilde\sigma = 1.2\) (zoomable)
1606_0102
pentagons
\(\tilde\sigma = 1.3\) (zoomable)
1606_0103
pentagons
\(\tilde\sigma = 1.4\) (zoomable)
1606_0104
pentagons
\(\tilde\sigma = 1.5\) (zoomable)
1606_0105
pentagons
\(\tilde\sigma = 1.6\) (zoomable)
1606_0106
pentagons
\(\tilde\sigma = 1.7\) (zoomable)
1606_0107
pentagons
\(\tilde\sigma = 1.8\) (zoomable)
1606_0108
pentagons
\(\tilde\sigma = 1.9\) (zoomable)
1606_0109
pentagons
\(\tilde\sigma = 2.0\) (zoomable)
1606_0110
pentagons
\(\tilde\sigma = 2.1\) (zoomable)
1606_0111
pentagons
\(\tilde\sigma = 2.2\) (zoomable)
1606_0112
pentagons
\(\tilde\sigma = 2.3\) (zoomable)
1606_0113
pentagons
\(\tilde\sigma = 2.4\) (zoomable)
1606_0114
pentagons
\(\tilde\sigma = 2.5\) (zoomable)
1606_0115
pentagons
\(\tilde\sigma = 2.6\) (zoomable)
1606_0116
pentagons
\(\tilde\sigma = 2.7\) (zoomable)
1606_0117
pentagons
\(\tilde\sigma = 2.8\) (zoomable)
1606_0118
pentagons
\(\tilde\sigma = 2.9\) (zoomable)
1606_0119
octagons
\(\tilde\sigma = 1.0\) (zoomable)
1606_0120
octagons
\(\tilde\sigma = 1.1\) (zoomable)
1606_0121
octagons
\(\tilde\sigma = 1.2\) (zoomable)
1606_0122
octagons
\(\tilde\sigma = 1.3\) (zoomable)
1606_0123
octagons
\(\tilde\sigma = 1.4\) (zoomable)
1606_0124
octagons
\(\tilde\sigma = 1.5\) (zoomable)
1606_0125
octagons
\(\tilde\sigma = 1.6\) (zoomable)
1606_0126
octagons
\(\tilde\sigma = 1.7\) (zoomable)
1606_0127
octagons
\(\tilde\sigma = 1.8\) (zoomable)
1606_0128
octagons
\(\tilde\sigma = 1.9\) (zoomable)
1606_0129
octagons
\(\tilde\sigma = 2.0\) (zoomable)
1606_0130
octagons
\(\tilde\sigma = 2.1\) (zoomable)
1606_0131
octagons
\(\tilde\sigma = 2.2\) (zoomable)
1606_0132
octagons
\(\tilde\sigma = 2.3\) (zoomable)
1606_0133
octagons
\(\tilde\sigma = 2.4\) (zoomable)
1606_0134
octagons
\(\tilde\sigma = 2.5\) (zoomable)
1606_0135
octagons
\(\tilde\sigma = 2.6\) (zoomable)
1606_0136
octagons
\(\tilde\sigma = 2.7\) (zoomable)
1606_0137
octagons
\(\tilde\sigma = 2.8\) (zoomable)
1606_0138
octagons
\(\tilde\sigma = 2.9\) (zoomable)
1606_0139
fiber seed
\(\tilde\sigma = 1.0\) (zoomable)
1606_0200
fiber seed
\(\tilde\sigma = 1.1\) (zoomable)
1606_0201
fiber seed
\(\tilde\sigma = 1.2\) (zoomable)
1606_0202
fiber seed
\(\tilde\sigma = 1.3\) (zoomable)
1606_0203
fiber seed
\(\tilde\sigma = 1.4\) (zoomable)
1606_0204
fiber seed
\(\tilde\sigma = 1.5\) (zoomable)
1606_0205
fiber seed
\(\tilde\sigma = 1.6\) (zoomable)
1606_0206
fiber seed
\(\tilde\sigma = 1.7\) (zoomable)
1606_0207
fiber seed
\(\tilde\sigma = 1.8\) (zoomable)
1606_0208
fiber seed
\(\tilde\sigma = 1.9\) (zoomable)
1606_0209
fiber seed
\(\tilde\sigma = 2.0\) (zoomable)
1606_0210
fiber seed
\(\tilde\sigma = 2.1\) (zoomable)
1606_0211
fiber seed
\(\tilde\sigma = 2.2\) (zoomable)
1606_0212
fiber seed
\(\tilde\sigma = 2.3\) (zoomable)
1606_0213
fiber seed
\(\tilde\sigma = 2.4\) (zoomable)
1606_0214
fiber seed
\(\tilde\sigma = 2.5\) (zoomable)
1606_0215
fiber seed
\(\tilde\sigma = 2.6\) (zoomable)
1606_0216
fiber seed
\(\tilde\sigma = 2.7\) (zoomable)
1606_0217
fiber seed
\(\tilde\sigma = 2.8\) (zoomable)
1606_0218
fiber seed
\(\tilde\sigma = 2.9\) (zoomable)
1606_0219
\(k = 6\)
\(\tilde\sigma = 1.0\) (zoomable)
1606_0240
\(k = 6\)
\(\tilde\sigma = 1.1\) (zoomable)
1606_0241
\(k = 6\)
\(\tilde\sigma = 1.2\) (zoomable)
1606_0242
\(k = 6\)
\(\tilde\sigma = 1.3\) (zoomable)
1606_0243
\(k = 6\)
\(\tilde\sigma = 1.4\) (zoomable)
1606_0244
\(k = 6\)
\(\tilde\sigma = 1.5\) (zoomable)
1606_0245
\(k = 6\)
\(\tilde\sigma = 1.6\) (zoomable)
1606_0246
\(k = 6\)
\(\tilde\sigma = 1.7\) (zoomable)
1606_0247
\(k = 6\)
\(\tilde\sigma = 1.8\) (zoomable)
1606_0248
\(k = 6\)
\(\tilde\sigma = 1.9\) (zoomable)
1606_0249
\(k = 6\)
\(\tilde\sigma = 2.0\) (zoomable)
1606_0250
\(k = 6\)
\(\tilde\sigma = 2.1\) (zoomable)
1606_0251
\(k = 6\)
\(\tilde\sigma = 2.2\) (zoomable)
1606_0252
\(k = 6\)
\(\tilde\sigma = 2.3\) (zoomable)
1606_0253
\(k = 6\)
\(\tilde\sigma = 2.4\) (zoomable)
1606_0254
\(k = 6\)
\(\tilde\sigma = 2.5\) (zoomable)
1606_0255
\(k = 6\)
\(\tilde\sigma = 2.6\) (zoomable)
1606_0256
\(k = 6\)
\(\tilde\sigma = 2.7\) (zoomable)
1606_0257
\(k = 6\)
\(\tilde\sigma = 2.8\) (zoomable)
1606_0258
\(k = 6\)
\(\tilde\sigma = 2.9\) (zoomable)
1606_0259
\(k = 10\)
\(\tilde\sigma = 1.0\) (zoomable)
1606_0260
\(k = 10\)
\(\tilde\sigma = 1.1\) (zoomable)
1606_0261
\(k = 10\)
\(\tilde\sigma = 1.2\) (zoomable)
1606_0262
\(k = 10\)
\(\tilde\sigma = 1.3\) (zoomable)
1606_0263
\(k = 10\)
\(\tilde\sigma = 1.4\) (zoomable)
1606_0264
\(k = 10\)
\(\tilde\sigma = 1.5\) (zoomable)
1606_0265
\(k = 10\)
\(\tilde\sigma = 1.6\) (zoomable)
1606_0266
\(k = 10\)
\(\tilde\sigma = 1.7\) (zoomable)
1606_0267
\(k = 10\)
\(\tilde\sigma = 1.8\) (zoomable)
1606_0268
\(k = 10\)
\(\tilde\sigma = 1.9\) (zoomable)
1606_0269
\(k = 10\)
\(\tilde\sigma = 2.0\) (zoomable)
1606_0270
\(k = 10\)
\(\tilde\sigma = 2.1\) (zoomable)
1606_0271
\(k = 10\)
\(\tilde\sigma = 2.2\) (zoomable)
1606_0272
\(k = 10\)
\(\tilde\sigma = 2.3\) (zoomable)
1606_0273
\(k = 10\)
\(\tilde\sigma = 2.4\) (zoomable)
1606_0274
\(k = 10\)
\(\tilde\sigma = 2.5\) (zoomable)
1606_0275
\(k = 10\)
\(\tilde\sigma = 2.6\) (zoomable)
1606_0276
\(k = 10\)
\(\tilde\sigma = 2.7\) (zoomable)
1606_0277
\(k = 10\)
\(\tilde\sigma = 2.8\) (zoomable)
1606_0278
\(k = 10\)
\(\tilde\sigma = 2.9\) (zoomable)
1606_0279