Indiana University, January 2007

T. Witten, University of Chicago

Force propagation in a simple solid: two pictures

Add circular beads to a container one by one
How does an added force ↓ reach the ground?
A: conventional solid: elasticity

Stresses above and below are *symmetric*

A: "bead-by-bead"

Stress go *asymmetrically* from source to boundary

Which picture is right?

Why study solids like this?

... kinetically jammed: each bead stays at the first place where it is stable

—unlike an equilibrium crystal

Important materials are kinetically jammed

Granular materials

Glasses: molecules get trapped in their positions as the liquid cools

Jammed vs equilibrium behavior is conceptually important

Forces in a jammed solid: solidity without elasticity

Alexei Tkachenko, David Head, Nagel group, Matthieu Wyart, T. Witten University of Chicago

Anomalous force propagation

Minimal connectivity \Rightarrow isostatic network

 \Rightarrow Delicate stress balance is needed

 \Rightarrow Forces propagate along rays, not uniformly

Wild response to local perturbations *free modes*

Anomalous vibration

Glasses have great excess of slow vibrational modes Nagel-Liu jammed sphere pack has analogous slow modes

Wyart: why minimal connectivity entails anomalous slow modes

Implications

http://jfi.uchicago.edu/~tten/Glasperlenspiel/

Bead-by-bead packing makes minimal connectivity

Each bead was placed at a stable point. (no friction) Adding one bead adds 2 contacts

Number of contacts = 2N

Number of bead position variables (x, y) = 2N

Isostatic network:

contact constraints are just sufficient to determine bead positions.

2N contact forces are just sufficient to balance forces on particles

Isostatic networks are *floppy***:** if we rebuild the pile with walls shifted by δ , we create a deformation that costs no energy: a "free mode" where top shifts by ϵ

 σ_{XX}

Internal stresses $\sigma_{XX} \sigma_{YY}$

must balance to avoid motion of free mode

$$\delta \sigma_{XX} + \epsilon \sigma_{VV} = 0$$

The medium must obey this stress balance condition.

Cf. Cates Bouchaud, Claudel, Wittmer, 1990's

Stress-balanced medium has ray-like force propagation

oblique *rays*

This oblique propagation is observed in sand piles

Simulation verifies stress balance condition

D. Head, A. Tkachenko, T. Witten

400 frictionless beads packed sequentially in 2-dimensional container Beads are shifted slightly to make contact forces compressive

Simulation reveals wild heterogeneity

Lines show extra compressive/ tensile contact forces from extra bead force at •

Free modes resulting from removal of one contact

Summary: forces in jammed solids

- Solid is uniform, but forces are heterogeneous
- They propagate asymmetrically, unlike an elastic solid
- These properties arise from their minimal connectivity, which requires a delicate balance of stresses.

Vibrations: another anomalous feature of jammed materials

Fast-frozen liquids have excess slow vibrations

Fast-cooling makes extra lowfrequency modes

excess

Inelastic neutron scattering intensity measures vibrational frequency spectrum.

Two potential reasons for excess low-frequency modes

DISORDER

Rapid freezing traps atoms in random positions makes localized modes (doesn't explain excess modes) makes quantum tunneling modes (two-level systems)

MARGINAL TRAPPING

Freezing: motion stops as soon as atoms are trapped.

Thus system is in a state adjacent to mobile state: *marginally trapped*.

Marginally trapped states have just enough constraints to be trapped: suggests *weak connectivity*

U of C: find an ideal case of marginal trapping: adiabatically jammed spheres.

O'Hern simulation: simple path to marginal jamming

Place soft frictionless spheres in a box at random at high density

Find closest configuration of minimum energy

Marginally jammed particles are *isostatic*

- Threshold: some particles feel forces
- All N forced* particles must have *balanced* forces.
 - d N constraints on contact forces in d dimensions
 - Requires** at least d N contacts.
- Adiabatic jamming suggests *minimal* increase of contact number with compression
- ... expect marginally jammed state to have just d N contacts: *isostatic*
 - *i.e. minimal number of contacts to fix particle positions.*
- Observed in simulation
- * Unforced particles (floaters) appear to play a minor role
- ** Exceptional angles allow fewer contacts not observed

Nearly isostatic packings have free modes

Free modes are ... extended (like acoustic modes), heterogeneous (unlike acoustic).

Can 0-frequency free modes explain low-frequency modes of jammed system?

Energy \rightarrow dynamical matrix \rightarrow normal modes

Contact energy V for particles i and j: $V = 1/2 (1 - r)^2$ r < 1particle diameters separation

... expressed in terms of displacement $\delta R_{i,} \, \delta R_{j}$, this gives energy

$$\delta E = \left\{ \frac{1}{4} \sum_{\langle ij \rangle} \left[(r_{ij}{}^{eq} - 1)(\delta \vec{R}_j - \delta \vec{R}_i)^{\perp} \right]^2 \right\} + \frac{1}{2} \sum_{\langle ij \rangle} [(\delta \vec{R}_j - \delta \vec{R}_i) \cdot \vec{n}_{ij}]^2$$

...a quadratic form in the displacements:

 $\delta E = \langle \delta R | M | \delta R \rangle$ vector of all 3N displacements dynamical matrix

Eigenstates of *M* are the **normal modes**; eigenvalues are **squared frequencies** ω^2 (for particles of mass 1)

Variational bound: for *any* displacement field $|\delta \mathbf{R}^*\rangle$ with $\langle \delta \mathbf{R}^*| \ 1 \ |\delta \mathbf{R}^*\rangle = 1$ lowest eigenvalue $\omega_0^2 \le \langle \delta \mathbf{R}^*| \ M \ |\delta \mathbf{R}^*\rangle$

Deforming a free mode can make a *slow* mode of low frequency

Constructing slow modes of

from free modes of

- 1. Make an independent set of free modes $(\delta \mathbf{R}_1, \dots \delta \mathbf{R}_5)$. These create gaps (only) at the 5 contacts \circ
- 2. Construct *trial modes* ($\delta \mathbf{R}^*_1, \dots \delta \mathbf{R}^*_5$) from ($\delta \mathbf{R}_1, \dots \delta \mathbf{R}_5$) to *close* these gaps

E g, displacement of particle i for mode 1 $\delta R_{1,i}^* = \delta R_{1,i} \sin(2\pi X_i/L)$

- 3. Select $(\delta \mathbf{R}_1, \dots \delta \mathbf{R}_5)$ so that $(\delta \mathbf{R}_1^*, \dots \delta \mathbf{R}_5^*)$ are *orthogonal*.
- 4. Trial modes have low energy, hence low average frequency ω(L)~1/L
 ...about as low as lowest *acoustic* modes of these particles

Thus there are **5 normal** modes \square with average frequency $< \omega(L)$

Trial modes account for excess slow modes

Lowest frequency modes:

For system size L (in 3D) there are $\mathcal{N}(L) \sim L^2$ trial modes

Their frequency $\omega_0(L) \sim 1/L$ as in a normal system.

The density of lowest modes $D_0(\omega) \sim \mathcal{N}/(\omega L^3) \sim L^0$ as observed

In d dimensions, there are $\mathcal{N}(L) \sim L^{d-1}$ trial modes; $D(\omega) \sim \mathcal{N}(\omega L^{d}) \sim L^{0}$

Higher-frequency modes:

For subsystem of size L/2, this argument $\Rightarrow D(\omega) \approx D_0(\omega)$ up to $\omega(L/2) \approx 2 \omega_0$

Extending to L \approx few x particle size \Rightarrow D(ω) \approx D₀(ω) for nonzero fraction of modes.

Deformed free mode picture agrees with marginally jammed simulation

How compression modifies the free modes

Compression adds contacts-per-particle z above the isostatic number 6 (in 3D) Each new contact blocks one of the L² free modes

Number of added contacts ~ $(z - 6) L^3$

When $(z - 6) L^3 > (constant) L^2$, excess modes are removed

Still, small subregions of size $L^* < (constant) / (z-6)$ are ~unperturbed

Further implications of deformed free modes

NORMALacousticImage: JammeddeformedSOLIDmodesSOLIDfree modes

shown

How anomalous modes disappear under compression Why shear modulus \propto number of excess contacts Why compression ($\phi - \phi_c$) \propto (excess contacts)²

hoped

Scaling of thermal conductivity, acoustic damping of jammed particles How coupling of deformed free modes leads to *melting*.

Marginal jamming makes a new kind of solid

Internal forces

Supports transverse stress like a solid

Forces propagate differently from elastic solid Dictated by required balance of internal stresses

Vibrational modes

Great excess of anomalous slow modes not possible in an elastic solid.

Relevance

Granular materials and glasses get trapped away from equilibrium state. Marginal jamming is the extreme limit of maximal trapping.

Questions

Does marginal jamming explain slow modes in real glasses?

Cf accepted picture: quantum mechanics

Do rays-like forces occur in isotropic jammed solids?

Can jamming ideas explain *melting*?

