Ω

θ(t)

Answer these questions in the blue books provided, briefly explaining your reasoning. Do not consult books, notes, or electronic devices. Please circle your answers.

# F.1 (12 points) Short answer

A particle of mass m moves freely on a vertical circular hoop that has radius R and is rotating at a fixed angular speed  $\Omega$  about a vertical axis. We describe the motion in terms of the generalized co-ordinate  $\theta(t)$  shown. There is no gravity.

- a) Is the kinetic energy T equal to the Hamiltonian  $\mathcal{H}$ ?
- b) Is T conserved?
- c) Is  $\mathcal{H}$  conserved?
- d) A certain force field  $\vec{F}(x,y)$  can be written in Cartesian components as  $f(x,y)\hat{x} + g(x,y)\hat{y}$ . This force is conservative. In addition  $\partial f/\partial y = 0$  at x = y = 0. What can you say about g at x = y = 0?

## F.2 (15 points) Table gyrations



A mass m is free to slide without friction on a horizontal table. It is attached to a cord that runs through a hole in the table to a hanging mass M that is free to move vertically. The mass m is swinging around the hole and is also moving inward and outward. We denote the angular co-ordinate as  $\phi$ . We observe that the mass moves radially between an inner distance  $r_i$  and an outer distance  $r_o$ .

- a) What is the Lagrangian function  $\mathcal{L}$  for this system, expressed using the generalized co-ordinates r and  $\phi$  and their time derivatives  $\dot{r}$  and  $\dot{\phi}$ ?
- b) Denoting the mechanical energy as E, Find  $E/(Mgr_i)$  in terms of the ratio  $b \equiv r_o/r_i$ .
- c) If the ratio b approaches 1, what is the limiting value of  $E/(Mgr_i)$ ?

### F.3 (20 points) Perturbed ring



A rigid horizontal circular ring of mass M and radius R is spinning about its vertical axis of symmetry at angular speed  $\omega_0$ . It is spinning on a fixed pivot at its center (left picture). Then a small pellet of mass  $m \ll M$  collides with the ring and sticks there. The pellet's motion before the collision was negligibly slow.

- a) Calculate the inertia tensor I about the pivot point in co-ordinates where z is the axis of symmetry of the original ring and x is the direction towards the pellet.
- b) What is the magnitude and direction of  $\vec{\omega}$  relative to  $\vec{\omega}_0$  immediately after the collision (so that the ring has not had time to rotate appreciably, middle picture)?
- c) The kinetic energy T changes from its initial value  $T_0$  due to the collision. What is  $T/T_0$ ? Did the energy increase or decrease? Express your answer in terms of the mass ratio m/M.

A short time later (right picture) the disk has rotated so that  $\vec{\omega}$  lies in the y-z plane.

- d) At this moment, what is the magnitude of the angular momentum |L| relative to its original value  $|L_0|$  before the pellet was attached? Express your answer in terms of the mass ratio m/M.
- e) At this same moment, what is  $|\omega_y/\omega_z|$ ? Express your answer in terms of the mass ratio m/M.

## F.4 (10 points) An orbital quantity

The Hamiltonian  $\mathcal{H}$  for motion of a planet of mass m a distance r from a star exerting a gravitational force  $-\gamma/r^2$  is given by

$$\mathcal{H} = \frac{1}{2m} p_r^2 + \frac{1}{2mr^2} p_{\phi}^2 - \gamma/r$$

Here  $p_r$  is the generalized momentum conjugate to the radial co-ordinate r and  $p_{\phi}$  is the momentum conjugate to the angular co-ordinate  $\phi$ . A quantity of interest in orbital mechanics is  $B \equiv p_r \ p_{\phi}$ . Hamilton's equations allow us to express the time derivatives  $\dot{r}, \dot{\phi}, \dot{p}_r, \dot{p}_{\phi}$  in terms of  $r, \phi, p_r, p_{\phi}$  themselves.

- a) What is the time derivative of  $p_{\phi}$  in terms of these co-ordinates and momenta?
- b) Express  $\dot{B}$  in terms of constants of the motion and r.

#### Solution:

**F.1** .

- a) Kinetic energy T is  $\frac{1}{2}m(R\sin\theta \Omega)^2 + \frac{1}{2}mR^2\dot{\theta}^2$ . Hamiltonian  $\mathcal{H}$  is  $\dot{\phi}\partial T/\partial\dot{\phi} T$ . Because of the  $\Omega^2$  part of  $T \mathcal{H} \neq T$ .
- b) No. the thing forcing the constant  $\Omega$  rotation does work on the system and changes its mechanical energy.
- c) Yes.  $d\mathcal{H}/dt = \partial \mathcal{L}/\partial t = \partial T/\partial t = 0.$
- d) If  $\vec{F}$  is to be conservative, its curl must vanish everywhere.  $0 = \nabla \times F = \hat{z}(\partial f/\partial y \partial g/\partial x)$ . Since the first term vanishes, the second must also. So we know  $\partial g/\partial x = 0$ .
- F.2 \_\_\_\_
- a)  $\mathcal{L} = \frac{1}{2}M\dot{r}^2 + \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\phi}^2 Mgr$  (We note that we are free to take any height to be 0 in the gravitational potential. Here we take it to be the height of the hanging mass when r = 0.)

b)

$$E = \frac{1}{2}(M+m)\dot{r}^2 + \frac{1}{2}mr^2\dot{\phi}^2 + Mgr$$

At the  $r_i$  or  $r_o$  the  $\dot{r}$  term vanishes. The  $\dot{\phi}$  term can be expressed in terms of the conserved angular momentum L:  $L = mr^2 \dot{\phi}$ . thus

$$E = \frac{L^2}{2mr_i^2} + Mgr_i = \frac{L^2}{2mr_o^2} + Mgr_o$$

Using both equations we may eliminate L to find E in terms of  $r_i$  and  $r_o$ :  $\frac{L^2}{2mr_i^2} = E - Mgr_i$ , so that

$$L^{2} = 2m(r_{i}^{2}E - Mgr_{i}^{3}) = 2m(r_{o}^{2}E - Mgr_{o}^{3})$$

Thus

$$r_i^2 E - Mgr_i^3 = r_o^2 E - Mgr_o^3$$

or

$$E(r_i^2 - r_0^2) = Mg(r_i^3 - r_o^3)$$

or using  $b = r_0/r_i$ 

$$E = Mgr_i \frac{b^3 - 1}{b^2 - 1}$$

c) Letting  $b = 1 + \epsilon$ ,  $b^3 \to 1 + 3\epsilon$ ,  $b^2 \to 1 + 2\epsilon$ , so that  $E \to \frac{3}{2}Mgr_i$ .

**F.3** 

- a)
- i) For  $I_{zz}$  all the ring mass is at distance R from the axis. The pellet contributes an additional  $mR^2$  so  $I_{zz} = (M + m)R^2$ .
- ii) For  $I_{xx}$  there is no contribution from the pellet.

$$I_{xx} = \frac{M}{2\pi R} \int x^2 = \frac{1}{2} \frac{M}{2\pi R} \int (x^2 + y^2) = \frac{1}{2} I_{zz} = \frac{1}{2} M R^2.$$

- iii) For  $I_{yy}$  the pellet contributes  $mR^2$ , so  $I_{yy} = \frac{1}{2}MR^2 + mR^2$
- All the off-diagonal I's are 0.
- b) z principal axis is still pointing in the direction of L;  $L = L_0 = I_{zz0} \omega_0 = MR^2\omega_0$ . But  $L = L_z = I_{zz}\omega$ . So  $MR^2\omega_0 = MR^2(1 + m/M)\omega$ . and  $\omega = \omega_0/(1 + m/M)$ . Since I is diagonal,  $\omega_x$  would be  $L_x/I_{xx}$ . But  $L_x = 0$ , so  $\omega_x = 0$ ; likewise  $\omega_y = 0$ :  $\vec{\omega}$  points along z.
- c)  $\vec{\omega}$  is in the z direction, so

$$T = \frac{1}{2}I_{zz}\omega^2 = \frac{1}{2}MR^2(1+m/M)(\frac{\omega_0}{1+m/M})^2 = \frac{1}{2}\frac{\omega_0^2}{1+m/M} = \frac{T_0}{1+m/M}$$

T decreases.

- d)  $\vec{L}$  is conserved; thus  $|L| = |L_0|$ .
- e) At this position using the x, y, z principal axes

$$T = L_z^2 / (2I_{zz}) + L_y^2 / (2I_{yy}).$$

On the other hand,  $T = L_0^2/(2I_{zz})$ . Simplifying and using  $|L| = L_0$ 

$$1 = (L_z/|L|)^2 + (L_y/|L|)^2 (I_{zz}/I_{yy}) = (L_z/|L|)^2 + (L_y/|L|)^2 + (L_y/|L|)^2 (I_{zz}/I_{yy} - 1)$$
$$= 1 + (L_y/|L|)^2 (I_{zz}/I_{yy} - 1)$$

Since  $I_{zz} > I_{yy}$  the only solution is  $L_y = 0$ ; thus  $\omega_y/\omega_z$  is also zero.

The disk in fact *does not precess* when it is perturbed in this way.

#### $\mathbf{F.4}$ \_

- a)  $\dot{p}_{\phi} = \partial \mathcal{H} / \partial \phi$ . This partial derivative is to be taken in phase space with  $r, p_{\phi} and p_r$  fixed. Since  $\phi$  does not appear in  $\mathcal{H}$  above, the derivative is zero and  $\dot{p}_{\phi} = 0$ .
- b) One may compute  $\dot{B}$  from the Poisson Bracket formula, which amounts to the chain rule.

$$\dot{B} = \partial B / \partial p_{\phi} \ \dot{p}_r + \partial B / \partial p_{\phi} \ \dot{p}_{\phi}$$

The second term vanishes, since  $p_{\phi}$  is constant. The  $\dot{p}_r = -\partial \mathcal{H}/\partial r = -p_{\phi}^2/(mr^3) - \gamma/r^2$  $\partial B/\partial p_r = p_{\phi}$ . Combining,

$$\dot{B} = p_{\phi} \left( p_{\phi}^2 / (mr^3) - \gamma / r^2 \right)$$

Since  $p_\phi$  is a constant of the motion, this expression has the requested form.

Physics 185