
Physics 185: Notes on Lecture 18 Monday 20 Feb. 2012 in class

Several things were garbled in this lecture. These notes are meant to correct and
clarify.

the laser puzzle.

I discussed the puzzle posed in Friday’s lecture. A laser on the roof of Kersten is aimed at a
distant object (a mast on the Sears Tower) via a telescopic sight. We suppose the mast is directly
north of the laser. Then the laser is fired toward the object. The question is whether the beam
hits the object or whether inertial forces from the earth’s motion interfere with the aim. I ignored
gravity and the centrifugal force and considered only the Coriolis acceleration ~acor = ~̇r × ~Ω. We
consider the Coriolis acceleration of the light rays coming into the telescope from the mast.

The direction of ~̇r is southward. The direction of ~Ω is in the North-Up plane (as found in
Wednesday’s lecture). Thus ~acor is perpendicular to this plane, the East-West direction. Using the
right hand rule, ~acor points West.

So the south-moving ray experiences a westward Coriolis acceleration. In order to reach the
telescope, directly to the south, the ray must start out directed slightly eastward. On entering
the telescope, it is moving slightly westward. Now we consider the laser beam, we send it in
the direction towards the light received by the telescope. Thus the beam is traveling north and
slightly East. It too experiences a Coriolis acceleration ~̇r × ~Ω. Since ~̇r is now reversed, ~acor is
also reversed (green ray in figure): the acceleration is almost Eastward, (since the outgoing ray is
almost northward). The initial beam is also directed slightly eastward; the ~acor acceleration bends
it even further eastward.

One may find the magnitude of the deflection by including only the dominant East-West part
of ~acor. If the beam travels 10 km, the deflection works out to be of the order of 10-20 microns.

The gravitational and centrifugal accelerations are simpler to treat. These accelerations are
independent of ~̇r. Thus return ray is deflected with the same acceleration as the incoming ray.
The return ray’s motion is just the time-reversal of the incoming ray’s motion. So these two forces
produce no aiming error—unlike the Coriolis force.



Angular momentum of a rigid body

Any rigid body may be viewed as an assembly of small masses m with positions ~rα, such that all
distances between two such masses α and β are constant in time. We noted that the most general
possible motion of such a body is a time-dependent translation and a time-dependent rotation with
some angular velocity ~ω(t).

Since we are describing the motion in terms of rotational co-ordinates, we naturally need to
express the corresponding momenta in terms of these co-ordinates. As we know, these momenta are
simply the angular momentum vector ~L. As noted in lecture and text, this ~L can be decomposed
simply in terms of the center-of-mass angular momentum M ~Rcm× ~P and the angular momentum
~LS computed in a co-ordinate system S where the the center of mass is at rest at the origin:

~L = M ~Rcm × ~P + ~LS

To see how ~L is related to ~ω we may thus suppose that the center of mass is at rest at the origin,
so ~L is just ~LS . Then the velocity of mass α is simply ~̇rα = ~ω × ~rα. The angular momentum ~L is
then given by

~L =
∑
α

m ~rα × ~̇rα = m
∑
α

~r × (~ω × ~rα)

Evidently ~L is proportional to ~ω, but in a complicated-looking way. The text computes it using
x-y-z notation. The notation below is a bit more compact. We first reduce the triple product using
the BAC–CAB formula:

~L = m
∑
α

~ω(~r · ~r)− ~r(~r · ~ω)

We can simplify this proportionality by computing ~L by components. We label the components
by 1, 2, 3 and then consider the component ~Lk. We also express the vectors on the right side in
terms of components:

~Lk = m
∑
α

~ωk(~r · ~r)− ~rk(~r · ~ω) = m
∑
α

∑
`

~ωk ~r · ~r − ~rk ~r` ~ω`

It is useful to introduce the so-called Kroenecker delta notation δij . This δij defined to be 1 when
i = j and 0 otherwise. Then we can represent ~ωk as

∑
` ~ω`δk`. Thus,

~Lk = m
∑
`

[∑
α

δk` ~r · ~r − ~rk ~r`

]
~ω`

We now see that the proportionality constant in [...] involves both the component index of ~ω and

that of ~L. We label the part of [...] involving components k and ` as Ik`. That is,

Ik` = m
∑
α

δk` ~r · ~r − ~rk ~r` (1)

Then the relation between ~L and ~ω simplifies to

~Lk =
∑
`

Ik` ~ω`

This formula has the form of a matrix I with components Ik` multiplying the vector ~ω.

~L = I ~ω



The entire multicomponent object I is called the inertia tensor of the object with the given origin.

We now examine the matrix I in more detail. It has “diagonal” components I11, I22, I33. Both
the first and second term in Eq. (1) contribute to these diagonal components. The first term is
r1

2 + r2
2 + r3

2. The second term subtracts out the indexed component, leaving only the other two.
Thus I11 = r2

2 + r3
2, and so forth. These diagonal components are known as the three “moments

of inertia”. The non-diagonal components of I, whose indices are different, are called the products
of inertia. Only the second term in Eq (1) contributes to these.

The sum over masses α of a continuous body is naturally expressible as an integral. In general
such integrals are complicated to perform. However, one can often simplify them greatly when
the body has spatial symmetries. One simplifying feature is valid for any body: The matrix I is
symmetric: Ik` = I`k. One verifies this by noting that Eq. (1) has the same value when ` and k are
interchanged. The next symmetry to note is that the off-diagonal components are odd functions
of the two r components involved. This symmetry allows one to show that a given Ik` = 0 for
certain objects. For definiteness we consider the component k = 1. Now we consider a body that
is mirror-symmetric in the 1 direction. That is, for every mass in the object at point (r1, r2, r3),
there is an identical mass at (−r1, r2, r3). The contribution of these two masses to, say, I12, is
m(r1r2 + (−r1)r2); it sums to zero. We may sum over all the masses of the symmetric object
pairwise in this way, so that the total I12 must be zero. The same reasoning applies to I13. We
conclude that any object with a mirror symmetry in the plane at the origin perpendicular to the
k axis has Ik` = 0 for all off-diagonal elements involving k.


