
Physics 185 Problem Set 2 Due Wednesday January 18, 2012 in class

Problem 2.1 (3 points) Light rocket

The momentum p of a photon is proportional to its energy E, unlike that of a massive
particle. The proportionality constant is the speed of light c: thus p = E/c. A light rocket
works by shining a light beam out the back end of the rocket. A certain light rocket gives
one Newton of thrust. What is the power of the light beam in watts?

Problem 2.2 (10 points) Underwater SuperSoaker

The SuperSoaker water gun works by pumping compressed air into a tank mostly filled
with water, and then releasing the water through a nozzle at a speed vex, thus causing a
reaction force. Suppose that the gun is operated under water, so that there is also a water
resistance force ~D = −b ~v (presumed to be linear).
a) Express the reaction force FR in terms of vex and (constant) rate of mass loss ṁ.
b) After squirting for a while, the gun’s original mass m0 has decreased to m and the

speed has increased from zero to v. Use the equation of motion to find this v in terms
of m/m0, and vex

c) The CPS 2000 has an initial mass of 4 kg, an output of about 1 kg/sec, and a muzzle
velocity of about 10 meters/sec. The linear drag coefficient b for this size object in
water is about .01 Newtons/(meter per sec) or .02 kg/sec. How much mass needs to
be expelled for the soaker to attain a speed of 1 meter/sec?

d) Does the drag on the outgoing stream of water matter?

Problem 2.3 (7 points) Accreting asteroid

Problem 3.29 in the text.

Problem 2.4 (10 points) Square vs Conservative

A force field is described by a smooth function ~F (~r) in the plane. We consider this

function near a given ~r0 which we take as the origin. As with any smooth function, ~F near
this origin is a linear function to arbitrarily good accuracy. Thus we may write

~F (x, y) = ~F0 + (a x + b y)x̂ + (c x + e y)ŷ

Now consider a rectangular closed path that starts from the origin, moves a small distance
∆y in the positive y direction, then a small distance ∆x in the positive x direction, then
reverses the ∆y motion and finally reverses the ∆x motion.
a) Find the work W done by F in traversing this path. Evidently if W 6= 0, this force is

not conservative
b) What conditions on F0, a, b, c, and e guarantee that W = 0?
c) Compare this condition with Eq. (4.36) in the text. Are the two conditions equivalent?

Solution:
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2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Momentum ∆p in time ∆t is F∆t. The corresponding energy ∆E emitted is (dE/dt) ∆t.
So power dE/dt = Fc = 1× (3× 108) = 300 megawatts.

note: the rocket would then be losing mass, according to E = mc2 at a rate ṁ = Ė/c2 =
300 = Fc/c2 = .3× 10−8 kg/sec . For a given amount of thrust, emitting light is less
costly in mass than emitting massive particles.

2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) FR = dp/dt = vex ṁ
b)

m(t)v̇ = FR −D = vexṁ− bv

v̇

vexṁ− bv
= 1/m(t)∫ v

0

dv′

vexṁ− bv′
=

∫ t

0

dt

m(t′)
=

∫ m

m0

−dm′

ṁ m′
=
−1

ṁ
log

m

m0

The integral on the left is∫ v

0

dv′

vexṁ− bv′
= −1

b
log

vexṁ− bv

vexṁ
= −1

b
log (1− bv/(vexṁ))

Combining,

log (1− bv/(vexṁ)) =
b

ṁ
log

m

m0
= log

(
m

m0

)b/ṁ

so that

1− bv/(vexṁ) =

(
m

m0

)b/ṁ

or

v = vex(
ṁ

b
)

(
1− (

m

m0
)b/ṁ

)
(1)

c) b/ṁ = .01; v/vex = .1; v/vex(b/ṁ) = .001. Since the left side of (1) is small, m

must be near m0. Expanding m = m0 − ∆m for small ∆m, gives ( m
m0

)b/ṁ = 1 −
(b/ṁ)∆m/m0 + ....
so (1) becomes

v

vex

(
b

ṁ

)
'
(

b

ṁ

)
∆m

m0
+ ...

Thus ∆m = m0(v/vex) = .4 kg. The drag force doesn’t matter in this regime. Still, for
such large velocities our linear approximation of D is suspect. Probably the needed mass
is greater than this calculation gives.
d) The drag on the outgoing stream of water doesn’t matter. What matters for the

rocket’s acceleration is its momentum when it leaves the rocket. The later fate of that
water is immaterial.
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2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I0ω0 = L0 = Lf = Ifωf

so

ωf = ω0(I0/If ) = ω0

(
2
5M0R

2
0

2
5MfR

2
f

)
= ω0

(
M0R

2
0

(8M0)(2R0)2

)
= ω0/32

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) We first consider the work done by ~F0.

W0 = ~F0 · (ŷ∆y + x̂∆x− ŷ∆y − x̂∆x) = 0

naturally. Now the linear part of ~F contributes work W as follows

W =

∫ ∆y

0
c y dy +

∫ ∆x

0
(ax + b∆y) dx +

∫ 0

∆y
(c∆x + ey) dy +

∫ 0

∆x
(ax) dx

=

∫ ∆y

0
c y dy +

∫ ∆x

0
(ax + b∆y) dx−

∫ ∆y

0
(c∆x + ey) dy −

∫ ∆x

0
(ax) dx

Performing the constant parts of the integrals

W =

∫ ∆y

0
c y dy +

∫ ∆x

0
(ax)dx + b∆y∆x− (c∆x)∆y −

∫ ∆y

0
(ey) dy −

∫ ∆x

0
(ax) dx

The remaining integrals cancel pairwise so that W = (b−c)∆x∆y. Thus the condition

for ~F to be conservative is c = b.
b)

∇× ~F = ∂xFy − ∂yFx = c− b

The condition for the curl to vanish is c = b as in a). Thus they are equivalent. .
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