
Physics 185 Problem Set 3 Due Wednesday January 25, 2012 in class

Problem 3.1 (12 points) Chain of springs

A spring chain is formed by connecting a large number N of identical massless springs in sequence, with
small masses m at the end of each spring. The end of the first spring is attached to the ceiling, leaving the
others to hang down and reach an equilibrium configuration of lowest potential energy. Each mass i then
has a position yi below the ceiling. The gravitational potential energy of mass i is m g yi. The ith spring as
a potential energy 1

2k (yi − yi−1)2. (These springs have a negligible unstretched length.)
a) Express the total energy U as a sum on i.
b) Suppose that N is very large so that

∑
i can be replaced by

∫
di and (yi − yi−1) can be replaced by

dy/di or y′. Express U [y] as an integral over i
c) Qualitatively, how does the stretch of the springs vary with position i?
d) Find a differential equation satisfied by the stationary y(i) (the Euler Lagrange equation).
e) What is the length of the hanging chain, i.e., what is the value of y(N)? How does it vary with N for

fixed total mass Nm?

Problem 3.2 (7 points) Fancy constraint

!"#

!$# !%#

A massless disk slides on a frictionless table. It is attached to three weights by inextensible strings
as shown. The disk is not necessarily in static equilibrium; it may be accelerating. If the disk moves, the
heights of the weights y1...y3 change. But clearly these three y’s cannot vary independently, since the disk
can only move in two dimensions. Thus there is a constraint condition that limits how the y’s can change.
If it moves slightly from the location shown, this constraint has the form

dy1 + .2dy2 + .3dy3 = 0 (1)

This constraint is enforced by tensions T1, T2, T3 in the three strings. Find a condition on T2 and T3 in terms
of T1 such that no net work is done by these tensions for motion consistent with the constraint (1).

Problem 3.2 (10 points) Fancy variation

We wish to find a stationary path y(x) for the functional

S[y] ≡
∫ 1

0

dxf(y, y′′)

with y(0), y(1), y′(0), and y′(1) all fixed. Notice that this differs from the S[y] treated in the text: the
integrand now depends on the second derivative y(x) rather than the first. Such variational problems arise
eg. in hydrodynamics. Happily, one may find a generalized Euler-Lagrange equation for the stationary path
using an argument closely analogous to that of Section 6.2. Derive this Euler Lagrange equation.

Solution:
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a)

U =

N∑
i=1

[
mgyi +

1

2
k(yi − yi−1)2

]
b)

U =

∫ N

0

di

[
mgy(i) +

1

2
k(y′)2

]
c) the greatest stretch is at the top, since the whole mass Nm is pulling on the top spring; the smallest

stretch is at the bottom, and it is N times smaller than at the top. When N is large, the stretch at the
bottom is arbitrarily small compared to that at the top. We can take it to be zero.

d) denote integrand in [...] by f(y, y′). Then

∂f/∂y = mg

∂f/∂y′ = ky′

d

di

∂f

∂y′
= ky′′

So Euler Lagrange equation reads

0 = −∂f
∂y

+
d

di

∂f

∂y′
= −mg + ky′′ = 0

e) This is the equation for free fall in upward-pointing gravity

y(i) = y0 + v i+
1

2
(gm/k) i2

To find y(N), we need to know the free parameters y(0) and v. We let the ceiling be at y(0) = 0. To
find v, we use the knowledge that y′ → 0 for i→ N . Now,

y′(i) = v + (gm/k)i;

so
0 = y′(N) = v + (gm/k)N, so that v = −(gm/k)N

Substituting into the y(i) formula, we get

y(N) =
1

2
(gm/k) N2 =

1

2
(gNm/k)N

For fixed total mass mM the stretching is proportional to the number of segments.

3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dW = T1dy1 + T2dy2 + T3dy3 For motion consistent with the constraints.

dy1 = −.2dy2 − .3dy3

so that
dW = T1(−.2dy2 − .3dy3) + T2 dy2 + T3 dy3 = (T2 − .2T1) dy2 + (T3 − .3T1) dy3

All these motions dy2, dy3 are consistent with the constraints, so dW can only be zero if the two (...) factors
are zero; i.e.,

T2 = .2T1; T3 = .3T1
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As in the chapter, we let the varied path Y (x) = y(x)+αη(x), where y(x) is the stationary path sought.
As before we wish to find the path y(x) such that

S(α) ≡1
0 dxf(Y, Y ′′)

is stationary, i.e.,

0 =
dS

dα
=

∫ 1

0

dx η
∂f

∂y
+ η′′

∂f

∂y′′

As before we can express the integral without η′′ using integration by parts∫ 1

0

η′′g(x) = −
∫ 1

0

η′g′(x) = +

∫ 1

0

ηg′′(x)

The endpoint contributions in the integrations by parts vanish because, by hypothesis η(0) and η(1) are
zero, as are η′(0) and η′(1). Here g(x) is ∂f/∂y′′ and g′′ means (d2/dx2)g. Thus the stationary condition
can be written as

0 =
dS

dα
=

∫ 1

0

dx η(x)

[
∂f

∂y
+

d2

dx2
∂f

∂y′′

]
Since the integral must vanish for any choice of η, the expression in [...] must also vanish, i.e.,

∂f

∂y
+

d2

dx2
∂f

∂y′′
= 0

This is our generalized Euler Lagrange equation.
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