
Physics 185 Problem Set 5 Due Wednesday February 8, 2011 in class

5.1 (8 points) Uniform magnetic field.

A uniform magnetic field B in the ẑ direction has a vector potential in cylindrical co-ordinates
(ρ, φ, z) given by A = 1

2B ρφ̂.
a) Using the Lagrangian of Eq. 7.103, find the equations of motion for the radial co-ordinate ρ

and the angular coordinate φ. What is the condition that ρ remain constant?

5.2 (8 points) wobbly orbit

The earth’s orbit is nearly circular, but not quite. The radial motion oscillates in a narrow
range around the minimum of the effective potential Ueff . We call this radius r∗. If this range
is narrow enough, Ueff may be approximated as A(r − r∗)2 − B, so the radial motion is simple
harmonic motion.
a) Find the coefficient A in terms of the strength of the gravitational potential Gm1m2/r

∗.
b) Find the period of the simple harmonic radial motion.

c) Compare with the angular revolution time 2π/φ̇

5.3 (12 points) virial theorem.

A particle of mass m moves in a central potential U(r) of the form U(r) = Ara, where the
exponent a may be a positive or negative number. We have seen that the effective potential Ueff(r)
for central force motion has the form U(r) + B/r2, where B is a positive constant depending on
the angular momentum. In the gravitational case, a = −1, and A is negative. Then Ueff has a
minimum at at some finite, nonzero value of r. If A is positive, there is no minimum.
a) If A is positive, what is the range of a such that Ueff does have a minimum (at finite, nonzero

r)? What is the range of a that gives a minimum (not a maximum) if A is negative?

The quantity G ≡ ~r · ~p is called the “virial of Clausius.” As usual, the momentum ~p = m~̇r.
This quantity is interesting because its time derivative Ġ is a fixed linear combination of T and U
whenever U has the form Ara. That is, Ġ = C T +D U , where C and D are constants.
b) Find the constants C and D in terms of a.
c) Now suppose that Ueff has a minimum and that the motion is bounded between some rmin and

rmax. As we know, the particle moves periodically in r with a period τ . The change of G over
a period must be zero. Use this fact to find a relation between the time average of T and the
time average of U over a period. This relation depends only on the exponent a.

Solution:

5.1

L =
1

2
mṙ2 + q~̇r · ~A

In the polar co-ordinates of interest

L =
1

2
mρ̇2 +

1

2
mρ2φ̇2 + qρφ̇(

1

2
Bρ) =

1

2
mρ̇2 +

1

2
ρ2(mφ̇2 + qBφ̇)



For the φ co-ordinate we have

∂L
∂φ

= 0;
∂L
∂φ̇

= mρ2φ̇+
1

2
qBρ2 = ρ2(mφ̇+

1

2
qB)

So that ρ2(mφ̇+ 1
2qB) = constant For the ρ variable we have

∂L
∂ρ

= ρ(mφ̇2 + qBφ̇);
∂L
∂ρ̇

= mρ̇

so that
mρ̈ = ρ(mφ̇2 + qBφ̇) = ρφ̇ (mφ̇+ qB) (1)

Now we look for conditions in which ρ is constant, i.e., the orbit is circular. Since ρ̈ must
be zero, (1) implies mφ̇ = −qB. The angular frequency is fixed at −qB/m. This is called the
cyclotron frequency. This condition doesn’t fix the value of ρ itself. Indeed, the kinetic energy
1
2ρ

2mφ̇2 = ρ2q2B2/m can only change if ρ changes: particles with different kinetic energies have
different orbital radii.

Given an initial velocity ~v one can always place the origin at a distance ρ from the particle
such that ~v = ρφ̇ φ̂, and φ̇ = −B/m. As shown above, the subsequent motion will have fixed ρ
and thus be a circular orbit. Thus all orbits are circular orbits around some center with angular
velocity ω = qB/m.

5.2

Ueff =
`2

2m r2
−GmM/r

At r = r∗, 0 = dUeff/dr = − `2

mr3
+GmM/r2 or 0 = −`2/m+GmM r∗. Then

Ueff(r∗) =
1

2
GmM r∗/r∗2 −GmM/r∗ = −1

2
GmM/r∗

The second derivative at r∗ is given by

d

dr

dUeff

dr
=

3`2

mr4
− 2

GmM

r3
= 3

GmM r∗

r∗4
− 2

GmM

r∗3
= GmM/r∗3 = |U(r∗)|/r∗2

Thus

Ueff = Ueff(r∗) +
1

2

d2Ueff

dr2
(r − r∗)2 = Ueff(r∗) +

1

2
|U(r∗)|(r − r∗)2/r∗2

b) Let u = r − r∗ then mü = −dUeff/dr = −|U(r∗)|u/r∗2. But in a harmonic oscillator

ü = −ω2 u. Therefore in this oscillator ω2 = |U(r∗)|/(mr∗2). radial period τ = 2π/ω =

2π
√
mr∗2/|U(r∗)| = 2π

√
r∗3/GM

c) The φ̇ for a nearly circular orbit is determined by radial acceleration: mr∗φ̇2 = F = −dU/dr =
U(r∗)/r∗. So

2π/φ̇→ 2π

√
mr∗2

U(r∗)
= 2π

√
mr∗2

GmM/r∗
= 2π

√
r∗3

GM

The two periods match, so the motion is a closed orbit as we anticipated.



5.3

a) If there is a minimum for some r, then 0 = dU/dr = −2B/r3 + aAra−1, so 2B/r2 = aA ra.
If A is positive, a must also be positive. We have unique extremum of U for any positive a.
For positive A and a, U → +∞ as r → 0 or r → ∞. Thus the single extremum must be a
minimum. If A is negative, a must also be negative, (2B/aA) = ra+2. If −2 < a < 0 then the
negative A term dominates at large r and Ueff has a minimum. But if a < −2 then the B term
dominates at large r, and the negative A term dominates at small r, so Ueff has a maximum
rather than a minimum.

b)

Ġ = ~̇r · ~p+ ~r · ~̇p = m~̇r · ~̇r + ~r · F = 2T − rdU/dr = 2T − aU
so C = 2 and D = −a.

c)

0 = G(τ)−G(0) =

∫ τ

0
dt Ġ =

∫ τ

0
dt(2T − aU) = τ(2 〈T 〉 − a 〈U〉)

where 〈...〉 indicates the average over one period.


