
Physics 185 Problem Set 6 Due Wednesday February 15, 2012 in class

6.1 (12 points) dilation co-ordinate.

We have seen that invariance of a system under spatial transformations like translation or
rotation lead to conserved quantities. Thus if L is unchanged under a rotation by φ about some
axis, then it follows that ∂L/∂φ̇ is a constant of the motion. More generally, if we know how L
changes under a spatial operation we gain information about the time derivative of its generalized
momentum. In this problem we consider the operation of spatial dilation: ~r → r̃ ≡ ~r/λ. This
is interesting because some systems behave in a simple way under dilation. A major example is
a power-law potential U(r) = Ara. We proceed as usual by taking the dilation variable λ as a
generalized co-ordinate for our system.
a) Using the r̃ and λ variables, find ∂U/∂λ at λ = 1. You see that the derivative is a simple

multiple of U itself. This property of any power-law function is known as homogeneity.
b) Again using the co-ordinates r̃ and λ, find ∂L/∂λ evaluated at λ = 1 and λ̇ = 0. It is a linear

combination of T and U , as in the previous problem.
c) Compute ∂L/∂λ̇, at λ = 1 and λ̇ = 0. This is the generalized momentum for dilation. Compare

with G of virial theorem problem on the last problem set.
This dilation operation generalizes to a system of many particles. If the particles interact

pairwise with a power-law potential Uij = Aij |ri − rj |a, then ∂L/∂λ is again a linear combination
of the total kinetic and potential potential energies. This leads to a powerful generalization of the
virial theorem.

6.2 (6 points) disappearing sun

One day half the mass of the sun suddenly disappears. This changes the Earth’s (initially
circular) orbit. What is its final mechanical energy E? What is the shape of the orbit? The virial
theorem is useful for this problem.

6.3 (15 points) best boost

A satellite is to be boosted from a circular orbit of radius R and speed v to a bigger one of
radius λR by firing rockets. For simplicity we will assume that the rockets act over a time much
shorter than any orbital period. An initial boost sends the satellite into a “transfer orbit” that
will connect the initial R circle to the desired λR circle. The rocket chemical energy required is a
fixed constant times the change in speed ∆v. (We suppose that the mass expelled from the rocket
is much smaller than the mass of the satellite.)
a) By what factor must the mechanical energy E change during the initial boost? Note that the

orbit’s major axis after this boost will have its final value.
b) A second boost is needed in order to change the transfer orbit into the final circular orbit. This

boost requires a second change of speed ∆2v. What is the ratio of this second ∆v to the first
one?

c) A second way to accomplish the boost is to apply this procedure twice to produce two
√
λ

increases in R. How much rocket energy does this use relative to the first method?



Solution:

6.1

a) ∂U(r)/∂λ = ∂U(λr̃)/∂λ = r̃ dU(λr̃)/d(λr̃) = a Ara = aU .
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At λ = 1; λ̇ = 0 this reduces to
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Thus
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At λ = 1; λ̇ = 0 this reduces to
∂L
∂λ̇

= mr · ṙ = r · p

It is just the G of the previous problem. Thus G is the generalized momentum corresponding
to a spatial dilation.

6.2

For a circular orbit the virial theorem says that the potential energy is twice the kinetic energy.
If the mass of the sun is suddenly halved, the potential energy −GmM/r is halved in magnitude,
while the kinetic energy remains unchanged. Thus the potential energy is no longer twice the
kinetic energy—the two are now equal and opposite. Thus the total energy E is 0, and the earth
is in a marginal parabolic escape orbit.

6.3

a) In class it was shown that the diameter d of the orbit depends only on the energy E, and not
the angular momentum `. We may find the quantitative dependence by taking any orbit we
like. We take one that is at rest at the apogee r = r+. Then E = −GmM/r+ = −GmM/d.
The orbit before the boost has diameter 2R. The orbit after the boost will have r− = R and
r+ = λR. Thus its diameter d = r+ + r− = (1 + λ)R. The ratio of energies Et/E0 is evidently
2/(1 + λ).

b) We first find the initial ∆v0 needed for the given λ. Since the potential energy doesn’t change

during the boost, Et − E0 = ∆T = 1
2m[(v0 + ∆v)2 − v0

2]. From the virial theorem T0 =

−1
2U0 = −E0. Thus

Et/E0 − 1 = −[(1 + ∆v/v0)2 − 1] = −2∆v/v0 − (∆v/v0)2



Or using the quadratic formula
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Evidently one can achieve the needed final energy by a (larger) negative ∆v, but we ignore
that option.
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The formula gives ∆v = 0 for λ = 1 as it must.

The second boost must give the orbit the energy Ef of a circular orbit: Ef = −GmM/(2λR).
So that Ef/Et = (1 + λ)/(2λ). Again the change of energy Ef − Et is entirely due to the
kinetic energy added by the boost.
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Since the final orbit is circular, 1
2mvf

2 = −Ef as before.

1− Et/Ef = −[1− (1−∆2v/vf )2] = −2(∆2v/vf ) + (∆2v/vf )2

Then
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Keeping only the smaller root as before,
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We now find the requested ratio
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We note that vf/v0 =
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This ratio is unity for λ near 1, and falls off as 1/
√
λ for large λ.

c) This part was complicated and it required insights that would not be apparent from the book or
the lecture. It is harder than you should be expected to do. Still, the solution below is instructive.

It is more convenient to express the ∆v’s in terms of the initial v0:
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We define this function as f(λ). In the two stage process we have an intermediate circular
orbit with speed vm. We may evidently achieve the given final orbit by making two successive
operations like a) and b), each with expansion factor

√
λ. Here the first pair of ∆v’s is given

by

∆v + ∆2v = v0 f(
√
λ)

The second pair ∆′v,∆′2v is the same as the first pair, except that its initial speed is vm instead
of v0:

∆′v + ∆′2v = vm f(
√
λ) = v0

vm
v0

f(
√
λ) = v0 f(

√
λ)/λ1/4

Combining,

∆v + ∆2v + ∆′v + ∆′2v
v0

= f(
√
λ)(1 + 1/λ1/4)

The ratio C of the 4-boost to the two-boost rocket energy (proportional to the sum of the ∆v’s)
is evidently the right hand side divided by f(λ):

C =
f(
√
λ)

f(λ)
(1 + 1/λ1/4)

The curves below are numerical plots of C(λ) vs λ (upper curve) and f(
√
λ)/f(λ) (lower curve).

The upper curve is always greater than 1, showing that the 4-boost method is always more



expensive.


