Physics 185 Problem Set 7

new wording is indicated by \bullet .

7.1 (10 points) Larmor precession

A classical particle of charge q is orbiting around a \bullet fixed opposite charge in the presence of a weak magnetic field B perpendicular to the orbit.

- a) Find a •uniformly-rotating co-ordinate system in which the Lorentz force $q\dot{r} \times B$ vanishes. •That is, determine the magnitude and direction of the angular velocity Ω of the rotating frame.
- b) •In the rotating frame there is still a residual effect of the magnetic field: a residual force. Find the residual force on the particle in this frame. It is quadratic in B.
- c) Supposing that B is so small that the residual force in b) can be neglected, what is the effect of B as viewed from the rest frame?

7.2 (12 points) Translation of axis of rotation

A rigid body can be viewed as a set of point masses m_{α} at positions \vec{r}_{α} . A body has angular momentum \vec{L}_0 when rotating at angular velocity $\vec{\omega}$ about its center of mass. If the axis rotation is shifted from the center of mass by displacement \vec{R} , but $\vec{\omega}$ remains fixed, \vec{L} changes from its initial value \vec{L}_0 . For this problem it is useful to know the "BAC - CAB" formula: $\vec{A} \times (\vec{B} \times \vec{C}) =$ $\vec{B}(\vec{A}\cdot\vec{C}) - \vec{C}(\vec{A}\cdot\vec{B}).$

- a) What is the change of \vec{L} (*i.e.*, $\vec{L} \vec{L}_0$) that results from shifting the origin?
- b) How does your answer in a) change if the entire mass M is concentrated at a point?
- c) If $\vec{\omega}$ is along the z axis, what is the change of I_{zz} , I_{zx} and I_{zy} as a function of \vec{R}_x , \vec{R}_y and \vec{R}_z ? d) What is the change in kinetic energy T when the origin is shifted? Is there an R for which the kinetic energy is minimal?

7.3 (12 points) Finding principal axes

A rigid body consists of three point masses m arranged in a 3-4-5 right triangle with hypotenuse 5a. The triangle is oriented in the x-y plane so that its shortest side is along the +x axis as shown. We wish to find the principal axes of the inertia tensor **I** for rotation around the top vertex. Evidently if $\vec{\omega}$ is along z, so is the $\vec{\ell}_{\alpha}$ contribution to \vec{L} from each mass. Thus z is a principal axis. The other two principal axes lie in the x-y plane rotated by some angle θ from the x axis.

- a) Find I_{xx}, I_{xy}, I_{yx} and I_{yy} .
- b) Find the principal moments in the x-y plane, denote I_+ and I_- .
- c) Find the angle θ for the principal axis with the larger moment relative to the short side of the triangle.

Solution:

- 7.1 ____
- a) In a frame rotating with angular velocity $\vec{\Omega}$, there is an inertial force $2m\vec{r} \times \vec{\Omega} + m\Omega^2 r\hat{r}$. The orbital speed \vec{r} in the rotating frame is related to the inertial velocity \vec{v} by $\vec{r} = \vec{v} - \vec{\Omega} \times \vec{r}$. The magnetic force in the rotating frame is thus $q\vec{v} \times \vec{B} = (\vec{r} + \Omega \times \vec{r}) \times \vec{B}$. Thus the effective force $F_{\rm eff}$ including the magnetic force and the inertial forces is

$$2m\vec{r}\times\vec{\Omega}+m\Omega^2r\hat{r}+q(\vec{r}+\Omega\times\vec{r})\times\vec{B}$$

Re-arranging

$$F_{\rm eff} = \vec{r} \times (2m\vec{\Omega} + q\vec{B}) + m\Omega^2 r \hat{r} + q(\vec{\Omega} \times \vec{r}) \times \vec{B}$$

By setting $\vec{\Omega} = -q/(2m)\vec{B}$ we eliminate the Lorentz-force term $\vec{r} \times (...)$.

b) What remains is the centrifugal force proportional to $\Omega^2 \sim B^2$ and the $\vec{\Omega} \times \vec{r} \times \vec{B}$ force, also proportional to B^2 . Specifically,

$$F_{\text{eff}} = \frac{q^2 B^2}{4m} r \ \hat{r} - \frac{q^2}{2m} (\vec{B} \times \vec{r}) \times \vec{B}$$

Using BAC - CAB formula

$$F_{\text{eff}} = \frac{q^2 B^2}{4m} r \ \hat{r} + \frac{q^2}{2m} [\vec{B}(\vec{B} \cdot \vec{r}) - \vec{r}(\vec{B} \cdot \vec{B})]$$

Since \vec{B} was assumed to be perpendicular to the orbit, the $\vec{B} \cdot \vec{r} = 0$. Combining,

$$F_{\rm eff} = -\frac{q^2 B^2}{4m} r \ \hat{r}$$

c) In the rotating frame, there is no effect from the B field (since we are ignoring the effects that are quadratic in B). Thus in the rest frame, the elliptical orbit gradually rotates or precesses about the B axis.

7.2 _

$$\vec{L}_{0} = \sum_{\alpha} m_{\alpha} \ \vec{r}_{\alpha} \times (\vec{\omega} \times r_{\alpha})$$
$$\vec{L} = \sum_{\alpha} m_{\alpha} \ (\vec{r}_{\alpha} + \vec{R}) \times (\vec{\omega} \times (\vec{r}_{\alpha} + \vec{R}))$$
$$\vec{L} = \sum_{\alpha} m_{\alpha} \ \left[\vec{r}_{\alpha} \times (\vec{\omega} \times \vec{r}_{\alpha}) + \vec{r}_{\alpha} \times (\vec{\omega} \times \vec{R}) + \vec{R} \times (\vec{\omega} \times \vec{r}_{\alpha}) + \vec{R} \times (\vec{\omega} \times \vec{R}) \right]$$

Expanding,

$$\vec{L} = \vec{L}_0 + \left(\sum_{\alpha} m_{\alpha} \ \vec{r}_{\alpha}\right) \times \left(\vec{\omega} \times \vec{R}\right) + \vec{R} \times \left(\vec{\omega} \times \left(\sum_{\alpha} m_{\alpha} \ \vec{r}_{\alpha}\right)\right) + \left(\sum_{\alpha} m_{\alpha}\right) \ \vec{R} \times \left(\vec{\omega} \times \vec{R}\right)$$

But since \vec{r}_{α} was measured from the center of mass, $\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} = \vec{0}$, so that

$$\vec{L} = \vec{L}_0 + M \ \vec{R} \times (\vec{\omega} \times \vec{R})$$

You may expand this using the BAC-CAB formula, though it isn't necessary here. This gives

$$\vec{L} - \vec{L}_0 = M \left(\vec{\omega} \ R^2 - \vec{R} \ (\vec{\omega} \cdot \vec{R}) \right)$$

- b) From a) we see that $\vec{L} \vec{L}_0$ is independent of the distribution of mass. Thus the answer is *the same* if all the mass is concentrated in the center.
- c)

$$\hat{L} = \omega \left(I_{zz} \ \hat{z} + I_{xz} \ \hat{x} + I_{yz} \ \hat{y} \right)$$

likewise

$$\dot{L}_0 = \omega \left(I_{0zz} \ \hat{z} + I_{0xz} \ \hat{x} + I_{0yz} \ \hat{y} \right)$$

Comparing with b)

$$I_{zz} - I_{0zz} = M \ \hat{z} \cdot [\vec{R} \times (\hat{z} \times \vec{R})] = M \ \hat{z} \cdot [\hat{z} \ R^2 - \vec{R} \ (\hat{z} \cdot \vec{R})] = M \ [R^2 - (\hat{z} \cdot \vec{R})^2]$$
$$I_{xz} - I_{0xz} = M \ \hat{x} \cdot [\hat{z} \ R^2 - \vec{R} \ (\hat{z} \cdot \vec{R})] = -M \ (\hat{x} \cdot \vec{R})(\hat{z} \cdot \vec{R})$$
$$I_{yz} - I_{0yz} = M \ \hat{y} \cdot [\hat{z} \ R^2 - \vec{R} \ (\hat{z} \cdot \vec{R})] = -M \ (\hat{y} \cdot \vec{R})(\hat{z} \cdot \vec{R})$$

d)

$$\Delta T = \frac{1}{2}\vec{\omega} \cdot (\vec{L} - \vec{L}_0) = \frac{1}{2}M \ \vec{\omega} \cdot [\vec{\omega} \ R^2 - \vec{R} \ (\vec{\omega} \cdot \vec{R})] = \frac{1}{2}M \ [(\omega R)^2 - (\vec{\omega} \cdot \vec{R})^2]$$

Since $|\omega R|$ is always greater than $|\omega \cdot R|$, ΔT is always greater than zero. ($\Delta T = 0$ whenever $\vec{R} \parallel \vec{\omega}$, since such a shift does not change the axis.) Thus the minimum T occurs when the origin is at the center of mass.

7.3 ____

a) Only the bottom two masses contribute to I. For rotation about the y axis, only the mass on x axis contributes

$$I_{yy} = m \ a^2 3^2$$
; $I_{xy} = I_{yx} = -ma^2 (3*4)$

For rotation about the x axis

 $I_{xx} = 2m \ a^2 4^2$

Thus the I matrix in the x-y plane is given by

$$I = m \ a^2 \begin{bmatrix} 32 & -12\\ -12 & 9 \end{bmatrix}$$

b) Denoting the numerical matrix as \hat{I} and its eigenvalues \hat{I}_{\pm} ,

$$\det(\hat{I} - \hat{I}_{\pm} \mathbf{1}) = 0$$
$$\det\begin{bmatrix}32 - \hat{I}_{\pm} & -12\\-12 & 9 - \hat{I}_{\pm}\end{bmatrix} = 0$$

expanding the det we obtain

$$0 = (32 - \hat{I}_{\pm})(9 - \hat{I}_{\pm}) - 144$$

or

$$0 = (32 * 9 - 144) - (32 + 9)I_{\pm} + I_{\pm}^2$$

whose roots are

$$\hat{I}_{\pm} = \frac{(32+9) \pm \sqrt{(32+9)^2 - 4(32*9 - 144)}}{2} = \frac{41 \pm \sqrt{1681 - 576}}{2}$$

Numerically

$$\hat{I}_{\pm} = 37.1..., 3.88...$$
; $I_{\pm} = ma^2(37.1..., 3.88...;)$

The principal values always bracket the diagonal values.

c) Now that we know the principal eigenvalues, we can solve for the eigenvectors, eg. using \hat{I}_+ ,

$$(32 - \hat{I}_+)\omega_x - 12\omega_y = 0$$

so that

$$\tan \theta = \omega_y / \omega_x \simeq (32 - 37.1) / 12 \simeq -0.403$$

so that $\theta \simeq -23.1$ degrees.