
Physics 185 Problem Set 9 Due Wednesday March 7, 2012 in class

9.1 (4 points) conjugate momentum and dilation

Suppose I dilate my co-ordinate q1 by a factor λ. while leaving the others untouched? Thus
my new coordinates are

(Q1, Q2, ...QN ) = (λq1, q2, ...qN )

What is the relation between the new conjugate momenta P1, ...Pn and the original p1, ...., pN?

9.2 (13 points) Poisson brackets

In class we defined a mathematical operation called the “Poisson Bracket”. Given any two
functions f(q,p) and g(q,p), the Poisson bracket [f, g] is another function of q,p defined as

[f, g] =

N∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

We noted that for a given f , the poisson bracket with the Hamiltonian [f,H] = ḟ . i.e., for an
infinitesimal time interval ∆t,

f(t+ ∆t) = f(t) + [f,H]∆t

We say that H generates an infinitesimal time translation. We saw earlier in the course the relation
between H and time translation.

a) apply the poisson bracket to the case where f is simply one of the q’s or p’s, say q1 or p1. Does
this agree with your prior information about q̇1 and ṗ1?

b) Clearly [g, f ] gives the same information as [f, g]. What is the mathematical relation between
these two quantities? What can you say about [f, f ]?

c) What is the value of [qi, pi]?

d) Consider a single particle of mass m moving in the x − y plane, where the potential energy
U(x, y) depends only on position. Consider the polar co-ordinates, r, and φ and the corre-
sponding cartesian co-ordinates x = r cosφ, and y = r sinφ. We saw earlier that pφ is the
momentum that is conserved when the system is invariant under rotation just as the Hamilto-
nian is conserved when the system (not the motion) is independent of time. In this connection
it is interesting to see what sort of transformation pφ generates. Find px and py in terms of
r, φ, pr and pφ. and then

e) find [x, pφ] and [px, pφ]. Compare with law for the infinitesimal rotation of any vector ~v

vx(φ+ ∆φ) = vx(φ)− vy∆φ ; vy(φ+ ∆φ) = vy(φ) + vx∆φ

continued next page
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9.3 (8 points) Canonical Co-ordinates

Here I use the the book’s notation q, p rather than my lecture notation {q}, {p}.
The Poisson Bracket transformation presumes a complete set of q’s and their conjugate p’s. We

showed in class that [f,H] = ḟ without specifying what the co-ordinates q were (and independent

of the choice of the function H). That means we would have got the same ḟ regardless of what
q’s we had started with. We are free to switch to Q’s that are a function of the q, and the
corresponding poisson brackets [[f, g]] using these Q and their conjugate momenta P gives the same
function as the original [f, g]. That is,

[[f, g]] ≡
N∑
i=1

∂f

∂Qi

∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi
= [f, g] ≡

N∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

Any set of co-ordinates Q and P with this property are a “canonical” set of co-ordinates for phase
space. They are equivalent to the original set q,p for computing whatever quantity we like.

A big advantage of phase space over co-ordinate space is that it gives added flexibility in
choosing co-ordinates. Any Q,P that gives [[f, g]] = [f, g] is fine. In particular we could choose Q
to be a function of both q and p (rather than just q as above). To establish this property, we don’t
need to examine all f and g. It is sufficient to show it for a complete set of co-ordinates, i.e., for
f of g equal to any of the qi or pi. That is, we only need to show

[[qi, qj ]] = [qi, qj ] = 0 ; [[pi, pj ]] = [pi, pj ] = 0 ; [[qi, pj ]] = [qi, pj ] = δij (1)

Notice that once we have found one set of canonical co-ordinates, (viz. q and p) we can find others
without further reference to the Lagrangian or Hamiltonian. The new co-ordinates only have to
preserve the quantity [f, g] that was specified using eg. the Cartesian co-ordinates of our system
and Newton’s equation.

Consider a system with mass m and (Cartesian) position x, so that p = mẋ. We define new
variables Q and P by

x =
√

2P sinQ ; p =
√

2P cosQ

a) Determine whether Q,P are canonical according to (1). Since [[x, x]] = [[p, p]] = 0 automatically,
you only need to check whether [[x, p]] = 1.

b) Now suppose that the system is a harmonic oscillator with mass 1, so that H = 1
2(x2 + p2).

Express H in terms of Q and P . Does one of the variables become ignorable? Which? What
is the corresponding conserved quantity?

Sometimes one can find a set of Q,P analogous to Q and P above. The Pi, Qi are called
action-angle variables. Any system (with a given H) with a complete set of action-angle variables
clearly has a complete set of ignorable co-ordinates and a complete set of conserved momenta. Such
systems are called integrable, since their motion is completely solved in terms of the action-angle
variables.. For example, central-force motion as described in Chapter 8 is integrable, but motion
with a general two-dimensional potential is not.
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Solution:

8.1

P1 = ∂L/∂Q1 = 1/λ∂L/∂q1 = p1/λ . The other P ’s are unchanged: Pi = pi for i > 1.

8.2

a)

[f, g] =

N∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

[q1,H] =

N∑
i=1

∂q1
∂qi

∂H
∂pi
− ∂q1
∂pi

∂H
∂qi

The first term vanishes unless i = 1. (because if i 6= 1, ∂ /∂qi means one is supposed the other
q’s and p’s constant, including q1. The second term vanishes altogether for the same reason.
We are left with

[q1,H] =
∂H
∂pi

That’s just Hamilton’s equation for q̇1. So the formula that [q1,H] reduces to the familiar
Hamilton’s equation for q̇1.

b) [g, f ] = −[f, g]; [f, f ] = −[f, f ] = 0.

c) Using the [f, g] formula above and the meaning of ∂ noted above, it is clear that [qi, pi] = 1.

d) We know from earlier chapters that in polar co-ordinates the kinetic energy T = 1
2mṙ

2 +
1
2mr

2φ̇2. The potential energy is independent of φ̇. Thus pr = mṙ, and pφ = ∂T/∂φ̇ = mr2φ̇.
Now we can express px, py in terms of this pr and pφ and the co-ordinates r and φ:

px = mẋ = m(d/dt)r cosφ = mṙ cosφ−mr sinφφ̇

= m(pr/m) cosφ−mr sinφ(pφ/mr
2) = cosφ pr − (1/r) sinφ pφ

py = mẏ = m(d/dt)r sinφ = mṙ sinφ+mr cosφφ̇

= m(pr/m) sinφ+mr cosφ(pφ/mr
2) = sinφ pr + (1/r) cosφ pφ

e)

[x, pφ] =
∂x

∂r

∂pφ
∂pr
− ∂x

∂pr

∂pφ
∂r

+
∂x

∂φ

∂pφ
∂pφ
− ∂x

∂pφ

∂pφ
∂φ

The only nonzero ∂pφ is ∂pφ/∂pφ = 1 Thus

[x, pφ] = ∂x/∂φ = −r sinφ = −y.

Likewise
[y, pφ] = ∂y/∂φ = +r cosφ = x
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[px, pφ] =
∂px
∂r

∂pφ
∂pr
− ∂px
∂pr

∂pφ
∂r

+
∂px
∂φ

∂pφ
∂pφ
− ∂px
∂pφ

∂pφ
∂φ

∂px
∂φ

= − sinφ pr − cosφ/r pφ = −py

So [ , pφ] transforms both x and px by an infinitesimal rotation.

8.3

a)
∂x

∂Q
=
√

2P cosQ ;
∂x

∂P
=
√

2
1

2

1√
P

sinQ =
1√
2P

sinQ ;

∂p

∂Q
= −
√

2P sinQ ;
∂p

∂P
=
√

2
1

2

1√
P

cosQ =
1√
2P

cosQ

Thus

[[x, p]] ≡ ∂x

∂Q

∂p

∂P
− ∂x

∂P

∂p

∂Q
= (
√

2P cosQ)
1√
2P

cosQ− 1√
2P

sinQ(−
√

2P sinQ)

Simplifying,
[[x, p]] = cos2Q+ sin2Q = 1

So Q,P are canonical. (I didn’t show in class that this condition guarantees that the P and Q
are canonical.)

b)

x2 = 2P sin2Q ; p2 = 2P cos2Q

so that

H =
1

2
(x2 + p2) =

1

2
(2P )(sin2Q+ cos2Q) = P

We see that the canonical momentum is H itself. Since Q is ignorable, this P is conserved.
This is how the conservation of energy emerges in this language.
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