Physics 185 Problem Set 9 Due Wednesday March 7, 2012 in class

9.1 (4 points) conjugate momentum and dilation

Suppose I dilate my co-ordinate q; by a factor A. while leaving the others untouched? Thus

my new coordinates are
(Qla QQa QN) = (/\QL q2, qN)

What is the relation between the new conjugate momenta Py, ...P, and the original pq,....,pN7

9.2 (13 points) Poisson brackets

In class we defined a mathematical operation called the “Poisson Bracket”. Given any two
functions f(q,p) and g(q, p), the Poisson bracket [f, g| is another function of q, p defined as
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We noted that for a given f, the poisson bracket with the Hamiltonian [f, H]| = f. i.e., for an
infinitesimal time interval At,

f(t+ At) = f(t) + [f, H]At

We say that H generates an infinitesimal time translation. We saw earlier in the course the relation
between H and time translation.

a) apply the poisson bracket to the case where f is simply one of the ¢’s or p’s, say ¢ or p;. Does
this agree with your prior information about ¢; and p;?

b) Clearly [g, f] gives the same information as [f, g]. What is the mathematical relation between
these two quantities? What can you say about [f, f]?

c¢) What is the value of [g;, p;]?

d) Consider a single particle of mass m moving in the x — y plane, where the potential energy
U(zx,y) depends only on position. Consider the polar co-ordinates, r, and ¢ and the corre-
sponding cartesian co-ordinates x = rcos¢, and y = rsin¢g. We saw earlier that py is the
momentum that is conserved when the system is invariant under rotation just as the Hamilto-
nian is conserved when the system (not the motion) is independent of time. In this connection
it is interesting to see what sort of transformation p, generates. Find p; and py in terms of
7, ¢,pr and py. and then

e) find [z, py] and [ps, py]. Compare with law for the infinitesimal rotation of any vector

V(P + AP) = v(@) —vyAd 5 vy(d + Ap) = vy(@) + v:Ad

continued next page



9.3 (8 points) Canonical Co-ordinates

Here I use the the book’s notation q, p rather than my lecture notation {q}, {p}.

The Poisson Bracket transformation presumes a complete set of q’s and their conjugate p’s. We
showed in class that [f, H] = f without specifying what the co-ordinates q were (and independent
of the choice of the function H). That means we would have got the same f regardless of what
q’s we had started with. We are free to switch to Q’s that are a function of the q, and the
corresponding poisson brackets [ f, g] using these Q and their conjugate momenta P gives the same
function as the original [f, g]. That is,
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Any set of co-ordinates Q and P with this property are a “canonical” set of co-ordinates for phase
space. They are equivalent to the original set q, p for computing whatever quantity we like.

A big advantage of phase space over co-ordinate space is that it gives added flexibility in
choosing co-ordinates. Any Q, P that gives [f, g] = [f, ¢] is fine. In particular we could choose Q
to be a function of both q and p (rather than just q as above). To establish this property, we don’t
need to examine all f and g. It is sufficient to show it for a complete set of co-ordinates, i.e., for
f of g equal to any of the ¢; or p;. That is, we only need to show

lgis a1 = lai,4;1 =0 5 [pispi]l = [Pispil =0 5 [aispi] = (g, pj] = 045 (1)

Notice that once we have found one set of canonical co-ordinates, (viz. q and p) we can find others
without further reference to the Lagrangian or Hamiltonian. The new co-ordinates only have to
preserve the quantity [f, g|] that was specified using eg. the Cartesian co-ordinates of our system
and Newton’s equation.

Consider a system with mass m and (Cartesian) position z, so that p = md. We define new
variables () and P by

r=V2Psin@Q ; p=+V2PcosQ

a) Determine whether @, P are canonical according to (1). Since [z, z] = [p, p] = 0 automatically,
you only need to check whether [z,p] = 1.

b) Now suppose that the system is a harmonic oscillator with mass 1, so that H = %(azQ + p2).
Express H in terms of () and P. Does one of the variables become ignorable? Which? What
is the corresponding conserved quantity?

Sometimes one can find a set of Q,P analogous to Q and P above. The P;, Q); are called
action-angle variables. Any system (with a given H) with a complete set of action-angle variables
clearly has a complete set of ignorable co-ordinates and a complete set of conserved momenta. Such
systems are called integrable, since their motion is completely solved in terms of the action-angle
variables.. For example, central-force motion as described in Chapter 8 is integrable, but motion
with a general two-dimensional potential is not.



Solution:

8.1

=0L/0Q1 = 1/A0L/0q1 = p1/X . The other P’s are unchanged: P; = p; for i > 1.

8.2
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The first term vanishes unless i = 1. (because if i # 1, @ /Jq; means one is supposed the other
¢’s and p’s constant, including ¢;. The second term vanishes altogether for the same reason.
We are left with .y

lq1, H] = o

That’s just Hamilton’s equation for ¢;. So the formula that [q1,H] reduces to the familiar
Hamilton’s equation for ¢;.

c¢) Using the [f, g] formula above and the meaning of d noted above, it is clear that [¢;, p;] = 1.

d) We know from earlier chapters that in polar co-ordinates the kinetic energy T = %mi‘Q +

%mr2q52. The potential energy is independent of ¢. Thus p, = m#, and py =0T/ ¢ = mr2g.
Now we can express py, py in terms of this p, and py and the co-ordinates r and ¢:

pr = mi = m(d/dt)r cos ¢ = mi cos ¢ — mrsin ¢¢

= m(pr/m)cos ¢ — mrsin¢(p¢/mr2) =cos¢ pr — (1/r)sin¢ P
py = my = m(d/dt)rsin ¢ = m7 sin ¢ 4+ mr cos b

= m(py/m)sin ¢ + mr cos ¢(p¢/mr2) = sin¢ py + (1/r) cos ¢ py
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The only nonzero dpy is dpy/dpy = 1 Thus

[z,pgy] = 0x/0¢ = —rsing = —y.

Likewise

[y, py] = 0y/0¢p = +rcosp =z
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Opy .
6_¢ = —sin¢ pr —cos@/r Py = —Py

[Pz, pg] =

So [ ,pg] transforms both = and p, by an infinitesimal rotation.

8.3
a)
g—g: 2Pcos @ ; g—;:\/ﬁ%%sinQ: \/;_PsinQ;
1 1 1
g—g:— 2Psin(@ ; g—gzﬁ§ —PCOSQ: _2PCOSQ
Thus
_ Oz dp Oz Op 1 . .
[[x,p]]:aQaP aPaQ—(\/QPCOSQ)\/ﬁCOSQ \/ﬁst( V2P sin Q)
Simplifying,

[z, p] = cos?Q +sin?Q =1

So @, P are canonical. (I didn’t show in class that this condition guarantees that the P and @
are canonical.)

2% = 2P sin? Q ; p2 = 2PC082Q
so that

H= %(9@2 +p?) = % (2P)(sin® Q + cos®> Q) = P

We see that the canonical momentum is H itself. Since @ is ignorable, this P is conserved.
This is how the conservation of energy emerges in this language.



