Physics 361

I summarized the disagreement between Drude theory and experiment in c_v , κ/σ and the thermopower Q. I said in class that the discrepancies could be summarized by saying that the Drude c_v is too big and the $\langle v^2 \rangle$ is too small. In a way this seems contradictory, since c_v measures the amount of energy in the electrons and so does v^2 . Thus if one was too small, it would seem that the other should be too small, as well. In transport coefficients such as the thermal conductivity κ . There are two ways in which the v^2 matters. First, it determines the amount of heat that is transported. Second, it determines the rate at which this amount is able to move. This is why both c_v and $\langle v^2 \rangle$ enter in the formula for κ . Despite the resemblence between c_v and $\langle v^2 \rangle$, there is a clearcut difference. The $\langle v^2 \rangle$ measures the amount of kinetic energy per electron while the c_v measures the temperature derivitive of the energy (kinetic or otherwise). Thus, the discrepancy between Drude and experiment can be expressed by saying that the experimental kinetic energy $\frac{1}{2}m \langle v^2 \rangle$ is much larger but much less temperature-dependent than the classical ideal gas values used by Drude.