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Scattering: Physics 361, October, 2002

Local density To specify the positions of atoms in an arbitrary solid arrange-
ment is an impossible task, unless the positions happen to follow

some strict pattern. Happily, it often suffices to specify the statistical proper-
ties of the environment of each atom. To this end we define the local density
〈ρ(r)〉0 as the average (number) density of atoms at a displacement ~r from an
arbitrary given atom. If there are several species of atoms present, there are
several kinds of local density. To demonstrate the usefulness of local density,
though, it suffices to consider a single species.

Scattering The behavior of the local density 〈ρ(r)〉0 is directly observable by
scattering †. This is an important way in which scattering senses

not only the overall size of a large body but also the internal distribution of
matter within it. In a scattering experiment a plane wave or beam of scattering
particles (photons, neutrons, etc.) impinges on an unknown object, such as
a liquid containing polymers. For definiteness we will imagine that our beam
particles are neutrons: the waves are then complex scalar Schrödinger waves.
The beam wave has the form A exp(i~k ·~r−iωt). The constant A is the amplitude
of the wave; its square is the number of neutrons per unit volume in the beam.
The angular frequency ω is proportional to the kinetic energy of the neutrons.
The wavevector ~k is proportional to their momentum. Evidently, one can change
k and ω together by varying the speed of the neutron beam. But one cannot
vary k and ω independently.

When this wave encounters an atomic nucleus, such as a carbon nucleus
in our solvent liquid, the great majority of it continues unperturbed. But a
tiny fraction radiates outward from the nucleus in a spherical wave of the form
B exp(i |k| r)/r. Of course doubling the number of neutrons in the beam
doubles the number scattered in this spherical wave. Thus B is proportional
to A; the proportionality factor is the (complex) scattering amplitude f . A
detector receives the wave far away in some particular direction (Figure 1).
The part of this spherical wave entering the detector is a plane wave with some

† The subject of scattering from condensed matter is discussed in detail in
eg. Stephen W. Lovesey Theory of neutron scattering from condensed matter
(Oxford, Clarendon Press, 1984). Chaikin and Lubensky [Principles of Con-
densed Matter Physics, Cambridge, 1995] has an extended discussion about the
scattering signature of many types of non-crystallline structure.
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Figure 1. Schematic view of neutron scattering from a solution contain-
ing a globular polymer, an assembly of atoms in a particular spatial
arrangement. The beam and the scattered waves are indicated by their
wavefronts. The detector is shown and the wavevectors ~k and ~k′ are
indicated.

wavevector ~k′ of magnitude k. The detector measures the intensity of the wave
as a function of the direction of ~k′. The r−1 factor in the scattered wave is
virtually the same distance for all the scatterers, since the detector is far away
from the sample.

The detector senses the scattered waves from all the M scatterers j in a
given volume. The amplitude from a particular scatterer at rj is B

r exp(~k′ ·
(~r − ~rj)). As we have noted, the prefactor B must be proportional to the
wavefunction of the incident wave: B = fA exp(i~k ·~rj−iωt). The wave entering
the detector is the sum of these contributions. The intensity I is proportional to
the absolute square of this wave. Since the scatterers in our liquid are generally
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in motion, the intensity I fluctuates in time. To obtain a time-independent
characterization of the system, we consider the average intensity. This intensity
grows with the amount of sample; to remove this uninteresting size dependence,
we consider the average intensity per scatterer 〈I〉 /M ∝

〈
|ψ|2

〉
/M .

〈I〉
M
∝ |A f |2 1

M

〈∣∣∣∣∣∣
∑
j

exp(i(~k′ − ~k) · ~rj)

∣∣∣∣∣∣
2〉
| exp(i~k′ · ~r − iωt)|2/r2. (1)

The last factor, with the r and t dependence, is an unimportant constant, as is
the prefactor giving the dependence on beam intensity and intrinsic scattering
power of the nuclei. The rest gives information about the structure. Evidently
it depends on ~k and ~k′ only through the difference ~k′ − ~k ≡ ~q †.

This remaining factor is called the structure function S(q) ††. We may
simplify it by expressing the squared sum as an explicit product of two sums:

S(q) =
1
M

∑
j,k

〈exp(i~q · ~rj) exp(−i~q · ~rk)〉

=
1
M

∑
j,k

〈exp(i~q · (~rj − ~rk))〉 .
(2)

One important property of the scattering intensity is immediately apparent from
this expression. The spatial information in S(q) is strongly blurred. The degree
of blurring can be expressed in terms of the scattering wavelength λ defined as
2π/q. To see this, we imagine that the scatterers i were moved by arbitrary small

† Evidently q may be changed simply by varying the angle θ between the in-
cident beam and the scattered rays that are detected. We are considering a case
where the scattering particles lose no energy in the (elastic) scattering process,
so that |k′| = |k|. Then some simple geometry shows that |q| = 2|k| sin(θ/2).
†† Sometimes it is necessary to consider the q dependence of the scattering

amplitude f from each elementary scatterer. This q dependence reflects the
distribution of matter within an elementary scatterer and is called the form
factor. In some discussions of scattering, the elementary scatterers are taken
to be an entire polyatomic structure such as a polymer. In that case, much of
the information in the S(q) above would appear in the form factor. The sepa-
ration of the intensity of Eq. (1) into form and structure functions is evidently
somewhat arbitrary. In our discussion we include all spatial information in the
structure function.

printed October 9, 2002 .3

displacements uj . The effect would be to add a new factor exp(i~q · (~uj − ~uk))
in (2). But if all the uj were much smaller than the scattering wavelength λ,
these new factors would all be nearly unity, and S(q) would hardly change.
That is, S(q) cannot detect anything about the positions of the scatterers to a
precision of much less than a wavelength λ. We could for example gather all
the scatterers lying within a tenth of a wavelength of one another into bunches
and the effect on S(q) would be minor. Conversely, it is immaterial whether the
scattering occurs from discrete scatterers at specific points rj or from a smeared
distribution of scattering spread over a small regions around each rj—provided
the region is much smaller than 2π/q.

We may use our density language to simplify the expression in (2). The
density ρ(r) is the probability per unit volume that one of the scatterers is at r.
If the scatterers are at positions {rj} the density is given by ρ(~r) =

∑
j δ

3(~r−~rj).
Inserting

∫
d3r1δ

3(r1 − rj) (= 1) and
∫
d3r2δ

3(r2 − rk), We may re-arrange (2)
to read

S(q) =
1
M

∫
d3r1

∫
d3r2 〈ρ(r1)ρ(r2)〉 exp[i~q · (~r1 − ~r2)]. (3)

The absolute location of r is clearly immaterial in the 〈ρρ〉. Both points may
be shifted by ~r2 so that 〈ρ(~r1)ρ(~r2)〉 = 〈ρ(~r1 − ~r2)ρ(0)〉. Now we note that the
integrand depends only on ~r1 − ~r2, which we denote by ~r:

S(q) =
∫
d3r1

M

∫
d3r 〈ρ(~r)ρ(0)〉 exp[i~q · ~r]. (4)

Moreover, 〈ρρ〉 is simply related to the local density discussed above. We may
think of it as the joint probability that a monomer is at the origin and that
another is at ~r. This is the overall probability that a monomer is at the origin
times the conditional probability that a second monomer is at ~r given that one
is at 0. The probability that a monomer is at the origin (or any other point in
the sample) is 〈ρ〉 = M/(

∫
d3r). The conditional probability is the same as the

local density 〈ρ(r)〉0. Thus 〈ρ(~r)ρ(0)〉 = 〈ρ〉 〈ρ(r)〉0, and

S(q) =
∫
d3r 〈ρ(r)〉0 exp(i~q · ~r). (5)

The reduced scattering intensity S(q) is related to the local density by a simple
integral transform—the Fourier transform. This means that if one expresses
the scattering density ρ(~r) as a sum of plane waves of all different wavevectors,
the scattering intensity and S(q) arise from those waves that have wavevector
~q. If the local density is constant the S(q) is simply zero for q > 0.
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In principle each nucleus in the fluid sample produces scattering. But
in practice the scattering from a pure fluid is very weak for wavevectors q of
interest here. We argued in the last chapter that structure at a given spatial
scale R causes scattering at wavevectors q of order 1/R. Thus we shall be
interested in very small wavevectors relative to the size of an atom. We have seen
above that the scattering from these atoms would not be appreciably changed if
they were replaced by smeared-out densities several atoms in width (since such
smearing is much less than 1/q). The result in a uniform fluid is an essentially
constant density. We have also seen that a perfectly constant density causes no
scattering. It is thus not surprising that a simple fluid causes little scattering†.

Any departure from this uniform density of scatterers gives rise to scatter-
ing intensity. The polymers in the fluid do this: their atoms have scattering
amplitudes f that differ from those of the solvent, so that there is a contrast
between the scattering per unit volume from regions containing monomers and
regions that do not. Thus, we may treat the scattering as though only the
polymers were present. Whenever a liquid contains independent large objects
of typical size R, the behavior of S(q) depends on the size of q relative to the R.
Evidently, the local density falls to zero for distances r >∼ R. When qR¿ 1 all
then exp(iq · r) → 1 for all r < R. Thus S(q) →

∫ R
d3r 〈ρ(r)〉0 1 → M . That

is, the internal structure is completely invisible to S(q) and the scattering is
about the same as though all the scatterers were concentrated at a point. Our
polymers show this behavior like any other large object.

Note 1. Compressibility sum rule When scatterers are dispersed in a liquid, the
small q limit of S(q) has a general interpretation, even when the scatterers are
interacting strongly. In this limit, the scattered wave sees only the large-scale
modulation of the scatterer density. At such large scales the scatterers can be
regarded as a uniform density with slight independent random variations from
point to point. As we have noted, a uniform density cannot produce scattering,
but the slight variations can. According to Eq. (4)

S(q → 0) =
∫
d3r

M
lim
q→0

[∫
d3r′ 〈ρ(0)ρ(r′)〉 exp(i~q · ~r′)

]
.

Here M is the number of scatterers in the sample. The limit as q → 0 is not
the same as q = 0. If q = 0 all the forward scattering along the original beam

† At these small wavevectors the scattering from the fluid is independent of
q and can readily be subtracted. As discussed in Note 1 below, the amount of
scattering can be shown to be proportional to the compressibility of the fluid
relative to an ideal gas at the same density. All familiar liquids and solids are
relatively incompressible; this leads to weak scattering.
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is mistakenly counted and S(0) appears proportional to the sample size. To
eliminate this spurious contribution we note that as long as q 6= 0, the scattering
cannot be affected by adding a constant to ρ(r) (since

∫
(constant)eiq·r = 0).

Accordingly, we replace ρ(r) by ρ(r) − ρ̄, where ρ̄ = M/
∫
d3r is the average

density of scatterers. With this choice, the limit q → 0 can be taken:

S(q → 0) =
1
ρ̄

〈
(ρ(0)− ρ̄)

∫
d3r′(ρ(r′)− ρ̄)

〉
.

We consider the scattering from some large volume Ω within the sample. The
number of scatterers N in this volume is evidently

∫
Ω
d3rρ(r); its average is

N̄ = ρ̄Ω. In terms of N ,

S(q → 0) =
1
ρ̄

〈
(ρ(r)− ρ̄)(N − N̄)

〉
=
〈
(N − N̄)2

〉
/N̄.

The scattering at q → 0 measures the mean-squared fluctuations of the average
density. These fluctuations can be related to thermodynamic quantities. One
can show that S(q → 0) (=

〈
(N − N̄)2

〉
/N̄) = T (dΠ/dρ)−1, where Π is the

pressure applied to the sample. This is shown in thermodynamics textbooks.
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